Skip to main content

Room Effect on Musicians’ Performance

  • Chapter
  • First Online:
The Technology of Binaural Understanding

Abstract

This chapter reviews the basics of music and room acoustics perception, an overview of auralization methods for the investigation of music performance and a series of studies related to the impact of room acoustics on listeners and musicians. The acoustics of the performance environment play a major role for musicians, both during rehearsals and concerts. However, systematic investigations of music performance are challenging due to the variety of conditions that determine the artists’ performance. Set-ups that allow controlled studies with variable but well-defined acoustic conditions have been developed over the last decades with increasing naturalness and applicability. Current auralization methods allow the reproduction of measured or synthesized room acoustics in real-time, thus enabling the perceptual assessment of room acoustics in laboratory conditions, isolating acoustics from other potential impacting factors. Common methodologies, as well as advantages and limitations of such virtual environments for the study of music and room acoustics perception are discussed in the first section. The virtual environments enable studies that help to explain why and how room acoustics can affect the listener subjective impact of a musical performance and to what extent listeners can be classified depending on their individual taste. Recent studies have shown that musicians systematically adjust their musical performance and adapt to the room acoustical conditions. The most important findings from these studies are presented in the second section. Methods and results from recent investigations of the impact of room acoustics on music performance are discussed in the third section of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackermann, D., C. Böhm, F. Brinkmann, and S. Weinzierl. 2019. The acoustical effect of musicians’ movements during musical performances. Acta Acustica united with Acustica. 105 (2): 356–367. https://doi.org/10.3813/AAA.919319.

  • Allen, J.B., and D.A. Berkley. 1979. Image method for efficiently simulating small-room acoustics. The Journal of the Acoustical Society of America 65 (4): 943–950. https://doi.org/10.1121/1.382599.

    Article  ADS  Google Scholar 

  • Amengual Garí, S.V. 2017. Investigations on the influence of acoustics on live music performance using virtual acoustic methods. Ph.D. thesis, Detmold University of Music. https://opus.hfm-detmold.de/frontdoor/index/index/searchtype/latest/docId/68/start/0/rows/10. Accessed 07 Oct 2019

  • Amengual Garí, S. V., M. Kob, and T. Lokki. 2019. Analysis of trumpet performance adjustments due to room acoustics. In Proceedings of the International Symposium on Room Acoustics-ISRA 2019. http://publications.rwth-aachen.de/record/772232.

  • Amengual Gari, S. V. and M. Kob. 2017. Investigating the impact of a music stand on stage using spatial impulse responses. Audio Engineering Society Convention 143. http://www.aes.org/elib/browse.cfm?elib=18622.

  • Amengual Garí, S.V., W. Lachenmayr, and M. Kob. 2015. Study on the influence of room acoustics on organ playing using room enhancement. In Proceedings of 3rd Vienna Talk on Music Acoustics, Vienna.

    Google Scholar 

  • Arend, J. M., L. Tim, and C. Pörschmann. 2019. A reactive virtual acoustic environment for interactive immersive audio. AES International Conference on Immersive and Interactive Audio. http://www.aes.org/e-lib/browse.cfm?elib=20431.

  • Astolfi, A., M. Giovannini, G. Barbato, and M. Filippi. 2007. The interpretation of objective measurements on the stage by means of the correlation with subjective data. In Proceedings of the 19th ICA, Madrid.

    Google Scholar 

  • Barron, M. 1978. The gulbenkian great hall, lisbon, ii: An acoustic study of a concert hall with variable stages. Journal of Sound and Vibration 59 (4): 481–502.

    ADS  Google Scholar 

  • Barron, M.F. 1974. The effect of early reflections on subjective acoustical quality in concert halls. Ph.D. thesis, University of Southampton.

    Google Scholar 

  • Begault, D.R., E.M. Wenzel, and M.R. Anderson. 2001. Direct comparison of the impact of head tracking, reverberation, and individualized head-related transfer functions on the spatial perception of a virtual speech source. Journal of the Audio Engineering Society 49 (10): 904–916. http://www.aes.org/e-lib/browse.cfm?elib=10175.

  • Beranek, L. 2004. Concert Halls and Opera Houses - Music, Acoustics and Architecture, 2nd ed. Berlin: Springer.

    Google Scholar 

  • Berkhout, A.J., D. de Vries, and J.J. Sonke. 1997. Array technology for acoustic wave field analysis in enclosures. The Journal of the Acoustical Society of America 102 (5): 2757–2770. https://doi.org/10.1121/1.420330.

    Article  ADS  Google Scholar 

  • Berkhout, A.J., D. de Vries, and P. Vogel. 1993. Acoustic control by wave field synthesis. Journal of the Acoustical Society of America 93 (5): 2764–2778. https://doi.org/10.1121/1.405852.

    Article  ADS  Google Scholar 

  • Berntson, A., and J. Andersson. 2007. Investigations of stage acoustics for a symphony orchestra. In Proceedings of the International Symposium on Room Acoustics, Sevilla.

    Google Scholar 

  • Blauert, J. 2013. The Technology of Binaural Listening. Berlin: Springer.

    Google Scholar 

  • Blum, D. 1987. The Art of Quartet Playing. The Guarneri Quartet in Conversation with David Blum. Ithaca: Cornell Universtiy Press.

    Google Scholar 

  • Bolzinger, S., and J.C. Risset. 1992. A preliminary study on the influence of room acoustics on piano performance. Journal de Physique IV 2 (C1): 93–96. https://doi.org/10.1051/jp4:1992116.

    Article  Google Scholar 

  • Bolzinger, S., O. Warusfel, and E. Kahle. 1994. A study of the influence of room acoustics on piano performance. Journal de Physique IV 4 (C5): 617–620.

    Google Scholar 

  • Borciani, P. 1973. Das Streichquartett. Mailand: Ricordi.

    Google Scholar 

  • Borish, J. 1984. Extension of the image model to arbitrary polyhedra. Journal of the Acoustical Society of America 75 (6): 1827. https://doi.org/10.1121/1.390983.

    Article  ADS  Google Scholar 

  • Botteldooren, B. 1995. Finite-difference time-domain simulation of low-frequency room acoustic problems. Journal of the Acoustical Society of America 98 (6): 3302–3308.

    ADS  Google Scholar 

  • Brereton, J.S., D.T. Murphy, and D.M. Howard. 2012. The virtual singing studio: A loudspeaker-based room acoustics simulation for real-time musical performance. In Proceedings of the Joint Baltic-Nordic Acoustics Meeting, 8.

    Google Scholar 

  • Brinkmann, F., and A. Lindau. 2012. Perceptual evaluation of headphone compensation in binaural synthesis based on non-individual recordings. Journal of the Audio Engineering Society 60 (1/2): 54–62.

    Google Scholar 

  • Brinkmann, F., A. Lindau, and S. Weinzierl. 2017. On the authenticity of individual dynamic binaural synthesis. The Journal of the Acoustical Society of America. 142, 1784. https://doi.org/10.1121/1.5005606.

  • Brinkmann, F., L. Aspöck, D. Ackermann, S. Lepa, M. Vorländer, and S. Weinzierl. 2019. A round robin on room acoustical simulation and auralization. The Journal of the Acoustical Society of America. 145, 2746. https://doi.org/10.1121/1.5096178.

  • Brunskog, J., A.C. Gade, G.P. Bellester, and L.R. Calbo. 2009. Increase in voice level and speaker comfort in lecture rooms. Journal of the Acoustical Society of America 125 (4): 2072–2082. https://doi.org/10.1121/1.3081396.

    Article  ADS  Google Scholar 

  • Cannam, C., C. Landone, and M. Sandler. 2010. Sonic visualiser: An open source application for viewing, analysing, and annotating music audio files. In Proceedings of the ACM Multimedia 2010 International Conference, 1467—-1468. https://doi.org/10.1145/1873951.1874248.

  • Chiang, W., S. Chen, and C. Huang. 2003. Subjective assessment of stage acoustics for solo and chamber music performances. Acta Acustica/Acustica 89: 848–856.

    Google Scholar 

  • Czerny, C. 1839. Vollständige theoretisch-practische Pianoforte-Schule [Complete theoretical-practical piano school], vol. 3. Wien: Diabelli.

    Google Scholar 

  • Dammerud, J. 2009. Stage acoustics for symphony orchestras in concert halls. Doctoral thesis, University of Bath.

    Google Scholar 

  • Dammerud, J., M. Barron, and E. Kahle. 2010. Objective assessment of acoustic conditions on concert hall stages—limitations and new strategies. Melbourne: In Proceeding of the ISRA.

    Google Scholar 

  • Dammerud, J., M. Barron, and E. Kahle. 2011. Objective assessment of acoustic conditions for symphony orchestras. Building Acoustics 18 (3–4): 207–219. https://doi.org/10.1260/1351-010X.18.3-4.207.

    Article  Google Scholar 

  • Daniel, J. 2003. Spatial sound encoding including near field effect: Introducing distance coding filters and a viable, new ambisonic format. In Audio Engineering Society Conference: 23rd International Conference: Signal Processing in Audio Recording and Reproduction. http://www.aes.org/e-lib/browse.cfm?elib=12321.

  • Devaney, J. 2016. Inter- versus intra-singer similarity and variation in vocal performances. Journal of New Music Research 45 (3): 252–264. https://doi.org/10.1080/09298215.2016.1205631.

    Article  Google Scholar 

  • Downie, J.S. 2003. Music information retrieval. Annual Review of Information Science and Technology 37: 295–340. https://doi.org/10.1002/aris.1440370108.

    Article  Google Scholar 

  • Eerola, T., and P. Toiviainen. 2004. MIR in Matlab: The MIDI toolbox. In Proceedings of the International Symposium on Music Information Retrieval Conference (ISMIR), Barcelona, Spain. http://ismir2004.ismir.net/proceedings/p004-page-22-paper193.pdf. Accessed 9 Oct 2019.

  • Flesch, C. 1928. Die Kunst des Violinspiels (The art of playing the violin), II: Künstlerische Gestaltung und Unterricht (Artistic design and education). Berlin: Verlag Ries & Erler.

    Google Scholar 

  • Friberg, A., E. Schoonderwaldt, and A. Hedblad. 2011. Perceptual ratings of musical parameters. In Gemessene Interpretation—Computergestützte Aufführungsanalyse im Kreuzverhör der Disziplinen, eds. H. Loesch and S. Weinzierl (Schott (Klang und Begriff 4), Chap. Perceptual, 237–253. http://kth.diva-portal.org/smash/record.jsf?pid=diva2:465496. Accessed 9 Oct 2019.

  • Friberg, A., E. Schoonderwaldt, and P.N. Juslin. 2007. CUEX: An algorithm for automatic extraction of expressive tone parameters in music performance from acoustic signals. Acta Acustica united with Acustica 93: 411–420.

    Google Scholar 

  • Gabrielsson, A. 1999. The performance of music. In The Psychology of Music, ed. D. Deutsch, 2nd ed., 501–602. New York: Academic Press.

    Google Scholar 

  • Gade, A.C. 1986. Acoustics of the orchestra platform form the musicians’ point of view. In Acoustics for Choir and Orchestra, ed. S. Ternström, vol. 52 (Royal Swed. Acad. of Music), 23–42.

    Google Scholar 

  • Gade, A.C. 1989a. Investigations of musicians’ room acoustic conditions in concert halls. Part I: Methods and laboratory experiments. Acustica 69: 193–203.

    Google Scholar 

  • Gade, A.C. 1989b. Investigations of musicians’ room acoustic conditions in concert halls. Part II: Field experiments and synthesis of results. Acustica 69: 249–262.

    Google Scholar 

  • Gade, A.C. 1992. Practical aspects of room acoustic measurements on orchestra plattforms. In Proceeding of the 14th ICA, Beijing.

    Google Scholar 

  • Gade, A.C. 2010. Acoustics for symphony orchestras: Status after three decades of experimental research. Melbourne: In Proceedings of the International Symposium on Room Acoustics, ISRA 2010 29–31 August 2010, Melbourne, Australia.

    Google Scholar 

  • Gade, A.C. 2013. Subjective and objective measures of relevance for the description of acoustics conditions on orchestra stages. Toronto: In Proceeding of International Symposium on Room Acoustics (ISRA), Toronto June 9–11, 2013.

    Google Scholar 

  • Galamian, I. 1962. Principles of Violin Playing and Teaching. Englewood Cliffs: Prentice-Hall.

    Google Scholar 

  • Gardner, W.G. 1995. Efficient convolution without input-output delay. Journal of the Audio Engineering Society 43 (3): 127–136.

    MathSciNet  Google Scholar 

  • Gerzon, M.A. 1973. Periphony: With-height sound reproduction. Journal of the Audio Engineering Society 21 (1): 2–8.

    Google Scholar 

  • Gingras, B. 2014. Perceiving musical individuality: Introduction to the research topic. Frontiers in Psychology 5 (661). https://doi.org/10.3389/fpsyg.2014.00661.

  • Gingras, B., P.-Y. Asselin, S. McAdams. 2013. Individuality in harpsichord performance: Disentangling performer- and piece-specific influences on interpretive choices. Frontiers in Psychology 4 (895). https://doi.org/10.3389/fpsyg.2013.00895.

  • Goebl, W., S. Dixon, G. De Poli, A. Friberg, R. Bresin, and G. Widmer. 2008. Sense in expressive music performance: Data acquisition, computational studies, and models. In Sound to Sense, Sense to Sound—A State of the Art in Sound and Music Computing, ed. P. Polotti, and D. Rocchesso. Berlin: Logos Verlag.

    Google Scholar 

  • Griesinger, D. 1997. The psychoacoustics of apparent source width, spaciousness and envelopment in performance spaces. Acta Acustica united with Acustica 83 (4): 721–731.

    Google Scholar 

  • Guthrie, A., S. Clapp, J. Braasch, and N. Xiang. 2013. Using ambisonics for stage acoustics research. In Proceeding of International Symposium on Room Acoustics, 1–10. https://pdfs.semanticscholar.org/9286/57d91ec3ca5258c4882e8acedc0cb5c2ab6f.pdf?_ga=2.51235498.2008809562.1570482125-647436850.1570482125. Accessed 07 Oct 2019.

  • ISO 3382–1. 2009. Acoustics—Measurement of Room Acoustic Parameters—Part 1: Performance Spaces. Geneva: International Organization for Standardization.

    Google Scholar 

  • Jeon, J.Y., Y.S. Kim, H. Lim, and D. Cabrera. 2015. Preferred positions for solo, duet, and quartet performers on stage in concert halls: In situ experiment with acoustic measurements. Building and Environment 93 (Part 2): 267–277. https://doi.org/10.1016/j.buildenv.2015.07.010.

  • Kato, K., K. Ueno, and K. Kawai. 2007. Musicians’ adjustments of performance to room acoustics. part ii: Acoustical analysis of performed sound signals. in Proceeding of the 19th ICA, Madrid.

    Google Scholar 

  • Kato, K., K. Ueno, and K. Kawai. 2015. Effect of room acoustics on musicians’ performance. part ii: Acoustic analysis of the variations in performed sound signals. Acta Acustica united with Acustica 101 (4): 743–759. https://doi.org/10.3813/AAA.918870.

  • Kleiner, M., B. Dalenbäck, and P. Svensson. 1993. Auralization an overview. Journal of the Audio Engineering Society 41 (11): 861–875. http://www.aes.org/e-lib/browse.cfm?elib=6976.

  • Kuttruff, H. 2009. Room Acoustics, 5th ed. Didcot: Taylor & Francis.

    Google Scholar 

  • Laird, I., D.T. Murphy, P. Chapman, and J. Seb. 2011. Development of a virtual performance studio with application of virtual acoustic recording methods. In 130th Convention of the Audio Engineering Society, New York, 12. Preprint 8358, http://www.aes.org/e-lib/browse.cfm?elib=1582.

  • Lartillot, O., and P. Toiviainen. 2007. A Matlab toolbox for musical feature extraction from audio. In Proceeding of 10th International Conference on Digital Audio Effects (DAFx-07), Bordeaux. https://dafx.labri.fr/main/papers/p237.pdf. Accessed 07 Oct 2019.

  • Leman, M. 2008. Embodied Music Cognition and Mediation Technology. Cambridge MA/London: MIT Press.

    Google Scholar 

  • Lentz, T. 2006. Dynamic cross-talk cancellation for binaural synthesis in virtual reality environments. Journal of the Audio Engineering Society 54 (4): 283–294.

    Google Scholar 

  • Lerch, A. 2008. Software-based extraction of objective parameters from music performances. Ph.D. thesis, TU Berlin.

    Google Scholar 

  • Luizard, P., J. Steffens, and S. Weinzierl. 2020. Singing in different rooms: Common or individual adaptation patterns. The Journal of the Acoustical Society of America. 147 (2): EL132–EL137. https://doi.org/10.1121/10.0000715.

  • Malham, D.G., and A. Myatt. 1995. 3-d sound spatialization using ambisonic techniques. Computer Music Journal 19 (4): 58–70.

    Google Scholar 

  • Marshall, A.H., D. Gottlob, and H. Alrutz. 1978. Acoustical conditions preferred for ensemble. Journal of the Acoustical Society of America 64 (5): 1437–1442. https://doi.org/10.1121/1.382121.

  • Marshall, A.H., and J. Meyer. 1985. The directivity and auditory impressions of singers. Acustica 58: 130–140.

    Google Scholar 

  • McAdams, S., P. Depalle, and E. Clarke. 2004. Analyzing musical sound. In Empirical Musicology, ed. E. Clarke, and N. Cook, 157–196. Oxford: Oxford University Press.

    Google Scholar 

  • Mckay, C., and I. Fujinaga. 2009. jMIR: Tools for automatic music classification. In Proceedings of the International Computer Music Conference (ICMC ’09), 65–68. https://www.semanticscholar.org/paper/jMIR%3A-Tools-for-Automatic-Music-Classification-McKay-Fujinaga/a8351d9f9a9c3705ab98219d706b4668da4ac376. Accessed 07 Oct 2019.

  • Meyer, J., and E.C. Biassoni de Serra. 1980. Zum Verdeckungseffekt bei Instrumentalmusikern [On masking with instrumental musicians]. Acta Acustica/Acustica 46 (2): 130–140.

    Google Scholar 

  • MIDI Manufacturer’s Association (MMA). 1996. The complete midi 1.0 detailed specification.

    Google Scholar 

  • midi.org. 2020. Details about MIDI \(2.0^TM\), MIDI-CI, Profiles and Property Exchange. https://www.midi.org/articles-old/details-about-midi-2-0-midi-ci-profiles-and-property-exchange.

  • Møller, H., M.F. Sørensen, C.B. Jensen, and D. Hammershøi. 1996. Binaural technique: Do we need individual recordings?. Journal of the Audio Engineering Society 44 (6): 451–469. http://www.aes.org/e-lib/browse.cfm?elib=7897.

  • Nakamura, T. 1987. The communication of dynamics between musicians and listeners through musical performance. Perception and Psychophysics 41 (6): 525–533.

    Google Scholar 

  • Naylor, G.M. 1988. Modulation transfer and ensemble music performance. Acustica 65: 127–137.

    Google Scholar 

  • O’Keefe, J. 1995. Acoustic conditions in orchestra pits and proscenium arch theatres. In Proceeding of the Institute of Acoustics, vol. 17, 133–.

    Google Scholar 

  • Ondet, A.M., and J.L. Barbry. 1989. Modeling of sound propagation in fitted workshops using ray tracing. Journal of the Acoustical Society of America 85 (2): 787–796.

    ADS  Google Scholar 

  • Panton, L., D. Cabrera, and D. Holloway. 2016. Using a spherical microphone array for stage acoustics: A preliminary case for a new spatial parameter. In Proceedings of the 22nd International Congress on Acoustics, Buenos Aires.

    Google Scholar 

  • Panton, L., D. Holloway, D. Cabrera, and L. Miranda. 2017. Stage acoustics in eight australian concert halls: Acoustic conditions in relation to subjective assessments by a touring chamber orchestra. Acoustics Australia 45 (1): 25–39. https://doi.org/10.1007/s40857-016-0075-2.

    Article  Google Scholar 

  • Pietrzyk, A., and M. Kleiner. 1997. The application of the finite element method to the prediction of sound fields of small rooms at low frequencies. In 102th Convention of the Audio Engineering Society, Gothenburg.

    Google Scholar 

  • Pulkki, V. 1997. Virtual sound source positioning using vector base amplitude panning. Journal of the Audio Engineering Society 45 (6): 456–466.

    Google Scholar 

  • Pulkki, V. 2006. Directional audio coding in spatial sound reproduction and stereo upmixing. In Audio Engineering Society Conference: 28th International Conference: The Future of Audio Technology–Surround and Beyond. http://www.aes.org/e-lib/browse.cfm?elib=13847.

  • Quantz, J.J. 1752. Versuch einer Anweisung, die Flöte traversière zu spielen [Attempted instruction to play the transverse flute]. Kassel: Bärenreiter (1983).

    Google Scholar 

  • Repp, B.H. 1994. On determining the basic tempo of an expressive music performance. Psychology of Music 22 (2): 157–167.

    Google Scholar 

  • Repp, B.H. 1999. Effect of auditory feedback deprivation on expressive piano performance. Music Perception 16 (4): 409–438.

    Google Scholar 

  • Sanders, J. 2003. Suitability of New Zealand halls for chamber music. Marshall Day Acoustics. http://marshallday.com. Accessed 07 Oct 2019.

  • Sarvazyan, A.P., M.W. Urban, and J.F. Greenleaf. 2013. Acoustic waves in medical imaging and diagnostics. Ultrasound in Medicine and Biology. 39 (7): 1133–1146.

    Google Scholar 

  • Savioja, L., and U.P. Svensson. 2015. Overview of geometrical room acoustic modeling techniques. Journal of the Acoustical Society of America 138 (2): 708–730. https://doi.org/10.1121/1.4926438.

    Article  ADS  Google Scholar 

  • Schärer, Z., and A. Lindau. 2009. Evaluation of equalization methods for binaural signals. In Proceeding of the 126th Convention of the Audio Engineering Society, Preprint 7721, Munich.

    Google Scholar 

  • Schärer Kalkandjiev, Z. 2015. The influence of room acoustics on solo music performances. An empirical investigation. Ph.D. thesis, TU Berlin. https://doi.org/10.14279/depositonce-4785.

  • Schärer Kalkandjiev, Z., and S. Weinzierl. 2013. The influence of room acoustics on solo music performance: An empirical case study. Acta Acustica united with Acustica 99 (3): 433–441. https://doi.org/10.3813/AAA.918624.

    Article  Google Scholar 

  • Schärer Kalkandjiev, Z., and S. Weinzierl. 2015. The influence of room acoustics on solo music performance. an experimental study. Psychomusicology: Music, Mind, and Brain 25 (3): 195–207. https://doi.org/10.1037/pmu0000065.

  • Seashore, C.E. 1938. Psychology of Music. New York: Dover Publications.

    Google Scholar 

  • Sloboda, J.A. 1982. Music performance. In The Psychology of Music, 1st ed, ed. D. Deutsch, 479–496. New York: Academic Press.

    Google Scholar 

  • Sloboda, J.A. 2000. Individual differences in music performance. Trends in Cognitive Sciences 4 (10): 397–403. https://doi.org/10.1016/S1364-6613(00)01531-X.

    Article  Google Scholar 

  • Spohr, L. 1833. Violinschule [violin school]. Wien: Haslinger.

    Google Scholar 

  • Tervo, S., J. Pätynen, N. Kaplanis, M. Lydolf, S. Bech, and T. Lokki. 2015. Spatial analysis and synthesis of car audio system and car-cabin acoustics with a compact microphone array. Journal of the Audio Engineering Society 63 (11): 914–925.

    Google Scholar 

  • Tervo, S., J. Pätynen, and T. Lokki. 2013. Spatial decomposition method for room impulse responses. Journal of the Audio Engineering Society 61 (1): 1–13.

    Google Scholar 

  • Ueno, K., T. Kanamori, and H. Tachibana. 2005. Experimental study on stage acoustics for ensemble performance in chamber music. Acoustical Science and Technology 4 (4): 345–352.

    Google Scholar 

  • Ueno, K., K. Kato, and K. Kawai. 2007. Musicians’ adjustments of performance to room acoustics. Part I: Experimental performance and interview in simulated sound field. In Proceeding of the 19th International Congress on Acoustics, 1807–1812. Madrid.

    Google Scholar 

  • Ueno, K., K. Kato, and K. Kawai. 2010. Effect of room acoustics on musicians’ performance. Part I: Experimental investigation with a conceptual model. Acta Acustica united with Acustica 96: 505–515. https://doi.org/10.3813/AAA.918303.

    Article  Google Scholar 

  • Ueno, K., and H. Tachibana. 2003. Experimental study on the evaluation of stage acoustics by musicians using a 6-channel sound simulation system. Acoustical Science and Technology 24 (3): 130–138.

    Google Scholar 

  • Ueno, K., K. Yasuda, H. Tachibana, and T. Ono. 2001. Sound field simulation for stage acoustics using 6-channel system. Acoustical Science and Technology 22 (4): 307–309. https://doi.org/10.1250/ast.22.307.

    Article  Google Scholar 

  • van den Braak, E.W., and R.C. van Luxemburg. 2008. New (stage) parameter for conductor’s acoustics? In Proceeding of Acoustics ’08, Paris, 2145–2150.

    Google Scholar 

  • van Luxemburg, R.C., C.C. Hak, P.H. Heijnen, and M. Kivits. 2009. Stage acoustics: Experiments on 7 stages of concert halls in the Netherlands. In Proceeding of inter-noise 2009, Ottawa.

    Google Scholar 

  • Van Vugt, F.T., H.-C. Jabusch, and E. Altenmüller. 2013. Individuality that is unheard of: Systematic temporal deviations in scale playing leave an inaudible pianistic fingerprint. Frontiers in Psychology 4 (134). https://doi.org/10.3389/fpsyg.2013.00134.

  • von Békésy, G. 1968. Feedback phenomena between the stringed instrument and the musician. The Rockefeller University Review 6 (2):

    Google Scholar 

  • Weinzierl, S., S. Lep, and M. Thiering. 2020. The language of rooms: From perception to cognition. In The Technology of Binaural Understanding, eds. J. Blauert, and J. Braasch, 435–454. Cham, Switzerland: Spring and ASA press.

    Google Scholar 

  • Weinzierl, S., and M. Vorländer. 2015. Room acoustical parameters as predictors of room acoustical impression: What do we know and what would we like to know? Acoustics Australia 1–8.

    Google Scholar 

  • Wenmaekers, R., C. Hak, M. Hornikx, and A. Kohlrausch. 2017. Sensitivity of stage acoustic parameters to source and receiver directivity: Measurements on three stages and in two orchestra pits. Applied Acoustics 123 (Supplement C): 20–28. https://doi.org/10.1016/j.apacoust.2017.03.004.

  • Wenmaekers, R.H., C.C. Hak, and L.C. van Luxemburg. 2012. On measurements of stage acoustic parameters: Time interval limits and various source-receiver distances. Acta Acustica/Acustica 98: 776–789.

    Google Scholar 

  • Wenzel, E.M., M. Arruda, D.J. Kistler, and F.L. Wightman. 1993. Localization using nonindividualized head-related transfer functions. Journal of the Acoustical Society of America 94 (1): 111–123. https://doi.org/10.1121/1.407089.

    Article  ADS  Google Scholar 

  • Winckel, F.F. 1962. Optimum acoustic criteria of concert halls for the performance of classical music. Journal of the Acoustical Society of America 34 (1): 81–86.

    ADS  Google Scholar 

Download references

Acknowledgements

A part of the methods and results presented in this chapter were obtained during a Ph.D. thesis in the frame of the Marie Curie Integrated Training Network “BATWOMAN”. Further results reported here were obtained during another Ph.D. work funded by the German National Academic Foundation and the German Research Foundation (DFG WE 4057/9-1). The authors thank the musicians for their participation in the studies and Tapio Lokki for the helpful comments on the manuscript. They are further indebted to two anonymous reviewers for constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malte Kob .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kob, M., Amengual Garí, S.V., Schärer Kalkandjiev, Z. (2020). Room Effect on Musicians’ Performance. In: Blauert, J., Braasch, J. (eds) The Technology of Binaural Understanding. Modern Acoustics and Signal Processing. Springer, Cham. https://doi.org/10.1007/978-3-030-00386-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00386-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00385-2

  • Online ISBN: 978-3-030-00386-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics