Skip to main content

Data-Driven Compressive Spectrum Sensing

  • Chapter
  • First Online:
Data-Driven Wireless Networks

Part of the book series: SpringerBriefs in Electrical and Computer Engineering ((BRIEFSELECTRIC))

  • 358 Accesses

Abstract

In this chapter, the related work and the main contributions are firstly introduced in Sect. 3.1. In Sect. 3.2, the proposed data-driven compressive spectrum sensing framework is presented, in which geolocation database is used to provide prior information for signal recovery. Additionally, Sect. 3.3 gives the numerical results of the proposed framework. Finally, Sect. 3.4 concludes this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ba, D., Babadi, B., Purdon, P., & Brown, E. (2014). Convergence and stability of iteratively re-weighted least squares algorithms. IEEE Transactions on Signal Processing, 62, 183–195.

    Article  MathSciNet  Google Scholar 

  • Candes, E. (2006). Compressive sampling. In Proceedings of the International Congress of Mathematicians, Madrid, Spain (Vol. 3, pp. 1433–1452).

    Google Scholar 

  • Candes, E. J., Wakin, M. B., & Boyd, S. P. (2008). Enhancing sparsity by reweighted l 1 minimization. Journal of Fourier Analysis and Applications, 14, 877–905.

    Article  MathSciNet  Google Scholar 

  • Carrillo, R. E., & Barner, K. (2009). Iteratively re-weighted least squares for sparse signal reconstruction from noisy measurements. In Proceedings of Conference on Information Sciences and Systems (CISS), Baltimore, MD (pp. 448–453).

    Google Scholar 

  • Chartrand, R. (2007). Exact reconstruction of sparse signals via nonconvex minimization. IEEE Signal Processing Letters, 14, 707–710.

    Article  Google Scholar 

  • Chartrand, R., & Staneva, V. (2008). Restricted isometry properties and nonconvex compressive sensing. Inverse Problems, 24, 035020.

    Article  MathSciNet  Google Scholar 

  • Chartrand, R., & Yin, W. (2008). Iteratively reweighted algorithms for compressive sensing. In Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Las Vegas, NV (pp. 3869–3872).

    Google Scholar 

  • Escoda, O., Granai, L., & Vandergheynst, P. (2006). On the use of a priori information for sparse signal approximations. IEEE Transactions on Signal Processing, 54, 3468–3482.

    Article  Google Scholar 

  • Fenton, L. (1960). The sum of log-normal probability distributions in scatter transmission systems. IRE Transactions on Communications Systems, 8, 57–67.

    Article  Google Scholar 

  • Friedlander, M., Mansour, H., Saab, R., & Yilmaz, O. (2012). Recovering compressively sampled signals using partial support information. IEEE Transactions on Information Theory, 58, 1122–1134.

    Article  MathSciNet  Google Scholar 

  • Holland, O., Ping, S., Aijaz, A., Chareau, J., Chawdhry, P., Gao, Y., et al. (September 2015). To white space or not to white space: That is the trial within the ofcom TV white spaces pilot. In Proceedings of the IEEE International Symposium Dynamic Spectrum Access Networks (DYSPAN), Stockholm, Sweden ( pp. 11–22).

    Google Scholar 

  • Kolodzy, P., & Avoidance, I. (June 2002). Spectrum policy task force. In Report ET Docket. Washington, DC:Federal Communications Commission.

    Google Scholar 

  • Lu, W., & Vaswani, N. (2012). Regularized modified BPDN for noisy sparse reconstruction with partial erroneous support and signal value knowledge. IEEE Transactions on Signal Processing, 60, 182–196.

    Article  MathSciNet  Google Scholar 

  • Miosso, C. J., von Borries, R., Argaez, M., Velázquez, L., Quintero, C., & Potes, C. (2009). Compressive sensing reconstruction with prior information by iteratively reweighted least-squares. IEEE Transactions on Signal Processing, 57, 2424–2431.

    Article  MathSciNet  Google Scholar 

  • Paisana, F., Marchetti, N., & DaSilva, L. (2014). Radar, TV and cellular bands: Which spectrum access techniques for which bands? IEEE Communications Surveys & Tutorials, 16, 1193–1220.

    Article  Google Scholar 

  • Ribeiro, J., Ribeiro, J., Rodriguez, J., Dionisio, R., Esteves, H., Duarte, P., et al. (2012). Testbed for combination of local sensing with geolocation database in real environments. IEEE Wireless Communications, 19, 59–66.

    Article  Google Scholar 

  • RFeye node https://www.crfs.com/all-products/hardware/nodes/.

  • Saab, R., & Yılmaz, Ö. (2010). Sparse recovery by non-convex optimization–instance optimality. Applied and Computational Harmonic Analysis, 29, 30–48.

    Article  MathSciNet  Google Scholar 

  • Sun, H., Chiu, W.-Y., & Nallanathan, A. (2012). Adaptive compressive spectrum sensing for wideband cognitive radios. IEEE Communications Letters, 16, 1812–1815.

    Article  Google Scholar 

  • Tian, Z., & Giannakis, G. (2007). Compressed sensing for wideband cognitive radios. In Proceedings IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Honolulu, HI (pp. 1357–1360).

    Google Scholar 

  • Wang, Y., Tian, Z., & Feng, C. (2012). Sparsity order estimation and its application in compressive spectrum sensing for cognitive radios. IEEE Transactions on Wireless Communications, 11, 2116–2125.

    Article  Google Scholar 

  • Wang, J., Ding, G., Wu, Q., Shen, L., & Song, F. (2014). Spatial-temporal spectrum hole discovery: A hybrid spectrum sensing and geolocation database framework. Chinese Science Bulletin, 59, 1896–1902.

    Article  Google Scholar 

  • Wang, N., Gao, Y., & Evans, B. (2015). Database-augmented spectrum sensing algorithm for cognitive radio. In Proceedings of IEEE International Conference on Communications (ICC), London, UK (pp. 7468–7473).

    Google Scholar 

  • Wipf, D., & Nagarajan, S. (2010). Iterative reweighted l 1 and l 2 methods for finding sparse solutions. IEEE Journal of Selected Topics in Signal Processing, 4, 317–329.

    Article  Google Scholar 

  • Zhang, X., Ma, Y., Gao, Y., & Zhang, W. (2018). Autonomous compressive sensing augmented spectrum sensing. IEEE Transactions on Vehicular Technology, 67, 6970–6980.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gao, Y., Qin, Z. (2019). Data-Driven Compressive Spectrum Sensing. In: Data-Driven Wireless Networks. SpringerBriefs in Electrical and Computer Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-00290-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00290-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00289-3

  • Online ISBN: 978-3-030-00290-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics