Skip to main content

Sparse Representation in Wireless Networks

  • Chapter
  • First Online:
Data-Driven Wireless Networks

Part of the book series: SpringerBriefs in Electrical and Computer Engineering ((BRIEFSELECTRIC))

Abstract

This chapter provides an overview of the background knowledge of sparse representation with particular focus on compressive sensing, including basic principles of CS, reweighted CS, and distributed CS. Moreover, this chapter also introduces the basic framework of compressive spectrum sensing, which applies compressive sensing to wideband spectrum sensing to achieve sub-Nyquist sampling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baron, D., Duarte, M. F., Sarvotham, S., Wakin, M. B., & Baraniuk, R. G. (2009). Distributed compressive sensing. arXiv:0901.3403, https://arxiv.org/abs/0901.3403.

  • Bhargavi, D., & Murthy, C. R. (2010). Performance comparison of energy, matched-filter and cyclostationarity-based spectrum sensing. In International Workshop on Signal Processing Advances in Wireless Communications (SPAWC) (pp. 1–5).

    Google Scholar 

  • Candes, E. (2006). Compressive sampling. In International Congress of Mathematicians, Madrid, Spain (vol. 3, pp. 1433–1452).

    Google Scholar 

  • Candes, E., & Romberg, J. (2007). Sparsity and incoherence in compressive sampling. Inverse Problems, 23, 969.

    Article  MathSciNet  Google Scholar 

  • Cands, E. J. (2008). The restricted isometry property and its implications for compressed sensing. Comptes Rendus Mathematique, 346, 589–592.

    Article  MathSciNet  Google Scholar 

  • Candes, E. J., Romberg, J., & Tao, T. (2006). Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 52, 489–509.

    Article  MathSciNet  Google Scholar 

  • Chang, H. S., Weiss, Y., & Freeman, W. T. (2009a). Informative sensing. CoRR abs/0901.4275.

    Google Scholar 

  • Chang, H. S., Weiss, Y., & Freeman, W. T. (2009b). Informative sensing of natural images. In IEEE International Conference on Image Processing (ICIP), Cairo, Egypt (pp. 3025–3028).

    Google Scholar 

  • Chartrand, R. (2007). Exact reconstruction of sparse signals via nonconvex minimization. IEEE Signal Processing Letters, 14, 707–710.

    Article  Google Scholar 

  • Chartrand, R., & Staneva, V. (2008). Restricted isometry properties and nonconvex compressive sensing. Inverse Problems, 24, 035020.

    Article  MathSciNet  Google Scholar 

  • Chartrand, R., & Yin, W. (2008). Iteratively reweighted algorithms for compressive sensing. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Las Vegas, NV (pp. 3869–3872).

    Google Scholar 

  • Choi, J. W., Shim, B., Ding, Y., Rao, B., & Kim, D. I. (2017). Compressed sensing for wireless communications: Useful tips and tricks. IEEE Communications Surveys & Tutorials, 19, 1527–1550.

    Article  Google Scholar 

  • Kolodzy, P., & Avoidance, I. (2002). Spectrum policy task force. Federal Communications Commission, Washington, DC, Rep. ET Docket.

    Google Scholar 

  • Mitola, J., & Maguire, G. Q. (1999). Cognitive radio: Making software radios more personal. IEEE Personal Communications, 6, 13–18.

    Article  Google Scholar 

  • Nekovee, M. (2008). Impact of cognitive radio on future management of spectrum. In International Conference on Cognitive Radio Oriented Wireless Networks and Communications (CrownCom), Singapore (pp. 1–6)

    Google Scholar 

  • Qin, Z., Fan, J., Liu, Y., Gao, Y., and Li, G. Y. (2018). Sparse representation for wireless communications: A compressive sensing approach. IEEE Signal Processing Magazine, 35, 40–58.

    Article  Google Scholar 

  • Rao, B. D., & Kreutz-Delgado, K. (1999). An affine scaling methodology for best basis selection. IEEE Transactions on Signal Processing, 47, 187–200.

    Article  MathSciNet  Google Scholar 

  • Tropp, J., Laska, J., Duarte, M., Romberg, J., & Baraniuk, R. (2010). Beyond Nyquist: Efficient sampling of sparse bandlimited signals. IEEE Transactions on Information Theory, 56, 520–544.

    Article  MathSciNet  Google Scholar 

  • Tropp, J. A., & Gilbert, A. C. (2007). Signal recovery from random measurements via orthogonal matching pursuit. IEEE Transactions on Information Theory, 53, 4655–4666.

    Article  MathSciNet  Google Scholar 

  • UK Office of Communications (Ofcom). (2009). Statement on cognitive access to interleaved spectrum.

    Google Scholar 

  • Wright, J., Ma, Y., Mairal, J., Sapiro, G., Huang, T. S., & Yan, S. (2010). Sparse representation for computer vision and pattern recognition. Proceedings of IEEE, 98, 1031–1044.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gao, Y., Qin, Z. (2019). Sparse Representation in Wireless Networks. In: Data-Driven Wireless Networks. SpringerBriefs in Electrical and Computer Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-00290-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00290-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00289-3

  • Online ISBN: 978-3-030-00290-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics