Skip to main content

Stimulation cérébrale profonde, neuro-imagerie et applications thérapeutiques en psychiatrie

  • Chapter
Apport des neurosciences à la psychiatrie clinique

Résumé

Mise au point à la fin des années 1980 par l’équipe française du Pr Louis Alim Benabid, la stimulation cérébrale profonde (SCP) consiste à stimuler des zones cérébrales profondes sous-corticales, les noyaux gris centraux, à l’aide d’électrodes implantées sur des cibles, déterminées en fonction du type de symptômes sur lesquels on veut agir. Le noyau sous-thalamique (NST) pour la maladie de Parkinson, le pallidum interne pour les dyskinésies, certaines parties du thalamus pour les tremblements essentiels sont actuellement des cibles thérapeutiques homologuées.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. Temel Y, Kessels A, Tan S, et al. (2006) Behavioural changes after bilateral subth alamic stimulation in advanced Parkinson disease: a systematic review. Parkinsonism Relat Disord 12(5): 265–72

    Article  PubMed  Google Scholar 

  2. Le Jeune F, Drapier D, Bourguignon A, et al. (2009) Subthalamic nucleus stimulation in Parkinson disease induces apathy: A PET study. Neurology 73(21): 1746–51

    Article  PubMed  Google Scholar 

  3. Péron J, Le Jeune F, Haegelen C, et al. (2010) Subthalamic nucleus stimulation affects theory of mind network: a PET study in Parkinson’s disease. PLoS One 5(3): e9919

    Article  PubMed Central  PubMed  Google Scholar 

  4. Mallet L, Polosan M, Jaafari N, et al. (z) A for the French “Stimulation dans le Trouble Obsessionnel Compulsif (STOC)” Study Group A randomized trial of high frequency Subthalamic Nucleus Stimulation in severe refractory Obsessive Compulsive Disorder. N Engl J Med 359(20): 2121–34

    Google Scholar 

  5. Alexander GE, DeLong MR, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9: 357–381

    Article  PubMed  CAS  Google Scholar 

  6. Nuttin B, Cosyns P, Demeulemeester H et al. (1999) Electrical stimulation in anterior limbs of internal capsules in patients with obsessive-compulsive disorder. Lancet 354(9189): 1526

    Article  PubMed  CAS  Google Scholar 

  7. Greenberg BD, Malone DA, Friehs GM et al. (2006) Three-year outcomes in deep brain stimulation for highly resistant obsessive-compulsive disorder. Neuropsychopharmacology 31(11): 2384–93

    Article  PubMed  Google Scholar 

  8. Aouizerate B, Cuny E, Bardinet E, et al. (2009) Distinct striatal targets in treating obsessive-compulsive disorder and major depression. J Neurosurg 111(4): 775–9

    Article  PubMed  Google Scholar 

  9. Le Jeune F, Vérin M, N’Diaye K, et al. (2010) French Stimulation dans le trouble obsessionnel compulsif (STOC) study group. Decrease of prefrontal metabolism after subthalamic stimulation in obsessivecompulsive disorder: a positron emission tomography study. Biol Psychiatry 68(11): 1016–22

    Article  PubMed  Google Scholar 

  10. Millet B, Dondaine T, Reymann JM, et al. (2013) Obsessive Compulsive Disorder Networks: Positron Emission Tomography and Neuropsychology Provide New Insights. PLoS One 8(1): e53241

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  11. Nauczyciel C, Drapier D (2012) Repetitive transcranial magnetic stimulation in the treatment of obsessive-compulsive disorder. Rev Neurol 168(8–9): 655–61

    Article  PubMed  CAS  Google Scholar 

  12. Péron J, El Tamer S, Grandjean D, (2011) Major depressive disorder skews the recognition of emotional prosody. Prog Neuropsychopharmacol Biol Psychiatry 35(4): 987–96

    Article  PubMed  Google Scholar 

  13. Sheline YI, Gado MH, Kraemer HC (2003) Untreated depression and hippocampal volume loss. Am J Psychiatry 160: 1516–8.

    Article  PubMed  Google Scholar 

  14. Frodl T, Meisenzahl EM, Zetzsche T, et al. (2003) Larger amygdala volumes in first depressive episode as compared to recurrent major depression and healthy control subjects. Biol Psychiatry 53: 338–44

    Article  PubMed  Google Scholar 

  15. Mayberg HS, Lozano AM, Voon V, et al. (2005) Deep brain stimulation for treatment-resistant depression. Neuron 45(5): 651–60

    Article  PubMed  CAS  Google Scholar 

  16. Drevets WC (2000) Neuroimaging studies of mood disorders. Biol Psychiatry 48: 813–29

    Article  PubMed  CAS  Google Scholar 

  17. 1Duhameau B, Ferré JC, Jannin P, et al. (2010) Chronic and treatmentresistant depression: a study using arterial spin labeling perfusion MRI at 3Tesla. Psychiatry Res 182(2): 111–6

    Article  PubMed  Google Scholar 

  18. Mayberg HS (2002) Modulating limbic-cortical circuits in depression: targets of antidepressant treatments. Semin Clin Neuropsychiatry 7: 255–68

    Article  PubMed  Google Scholar 

  19. Siuciak JA, Strick CA (2007) Phosphodiesterase 10A inhibitors as a novel therapeutic approach for schizophrenia. Expert Opin Drug Discov 2(7): 1001–9

    Article  PubMed  CAS  Google Scholar 

  20. Goktepe EO, Young LB, Bridges PK (1975) A further review of the results of sterotactic subcaudate tractotomy. Br J Psychiatry 126: 270–80

    Article  PubMed  CAS  Google Scholar 

  21. Lozano AM, Mayberg HS, Giacobbe P, et al. (2008) Subcallosal cingulate gyrus deep brain stimulation for treatment-resistant depression. Biol Psychiatry 64(6): 461–7

    Article  PubMed  Google Scholar 

  22. Holtzheimer PE, Kelley ME, Gross RE, et al. (2012) Subcallosal cingulate deep brain stimulation for treatment-resistant unipolar and bipolar depression. Arch Gen Psychiatry 69(2):150–8

    Article  PubMed  Google Scholar 

  23. Puigdemont D, Pérez-Egea R, Portella MJ, et al. (2011) Deep brain stimulation of the subcallosal cingulate gyrus: further evidence in treatment-resistant major depression. Int J Neuropsychopharmacol 22: 1–13

    Google Scholar 

  24. Malone DA Jr, Dougherty DD, Rezai AR et al. (2009) Deep brain stimulation of the ventral capsule/ventral striatum for treatment-resistant depression. Biol Psychiatry 65(4): 267–75

    Article  PubMed Central  PubMed  Google Scholar 

  25. Schlaepfer TE, Sturm V, Cohen MX, et al. (2009) Good vibrations: crossfrequency coupling in the human nucleus accumbens during reward processing. J Cogn Neurosci 21(5): 875–89

    Article  PubMed  Google Scholar 

  26. Bewernik BH, Hurleman R, Matusch A, et al. (2009) Nucleus Accumbens Deep Brain Stimulation decreases ratings of depression and anxiety in treatment resistant depression. Biol Psychiatry 67(2): 110–6

    Google Scholar 

  27. Bewernick BH, Kayser S, Sturm V, Schlaepfer TE (2012) Long-term effects of nucleus accumbens deep brain stimulation in treatment-resistant depression: evidence for sustained efficacy. Neuropsychopharmacology 37(9): 1975–85

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  28. Millet B, Jaafari N, Polosan M, et al. (2013) for the Sthym network Limbic Versus Cognitive Target for Deep Brain Stimulation in Treatment-Resistant Depression: Accumbens More Promising than Caudate sunbmitted to JNNP.

    Google Scholar 

  29. Schlaepfer TE, Bewernick BH, Kayser S, et al. (2013) Rapid effects of deep brain stimulation for treatment-resistant major depression. Biol Psychiatry 73(12): 1204–12

    Article  PubMed  Google Scholar 

  30. Kuhn J, Gründler TO, Bauer R, et al. (2011) Successful deep brain stimulation of the nucleus accumbens in severe alcohol dependence is associated with changed performance monitoring. Addict Biol 16(4): 620–3

    Article  PubMed  Google Scholar 

  31. Lipsman N, Woodside DB, Giacobbe P, et al. (2013) Subcallosal cingulate deep brain stimulation for treatment-refractory anorexia nervosa: a phase 1 pilot trial. Lancet 381(9875): 1361–70

    Article  PubMed  Google Scholar 

  32. Ewing SG, Grace AA (2013) Deep brain stimulation of the ventral hippocampus restores deficits in processing of auditory evoked potentials in a rodent developmental disruption model of schizophrenia. Schizophr Res 143(2–3): 377–83

    Article  PubMed Central  PubMed  Google Scholar 

  33. Drapier D, Drapier S, Sauleau P et al. (2006) Does subthalamic nucleus stimulation induce apathy in Parkinson’s disease? J Neurol 253(8): 1083–91

    Article  PubMed  CAS  Google Scholar 

  34. Péron J, Grandjean D, Le Jeune F et al. (2010) Recognition of emotional prosody is altered after subthalamic nucleus deep brain stimulation in Parkinson’s disease. Neuropsychologia 48(4): 1053–62

    Article  PubMed  Google Scholar 

  35. Le Jeune F, Peron J, Biseul I, et al. (2008) Subthalamic nucleus stimulation affects orbitofrontal cortex in facial emotional recognition: a PET study. Brain 131(Pt 6): 1599–608

    Article  PubMed Central  PubMed  Google Scholar 

  36. Robert G, Le Jeune F, Lozachmeur C, et al. (2012) Apathy in patients with Parkinson disease without dementia or depression: A PET study. Neurology 79(11): 1155–60

    Article  PubMed  CAS  Google Scholar 

  37. Tekin S, Cummings JL (2002) Frontal-subcortical neuronal circuits and clinical neuropsychiatry: an update. J Psychosom Res 53(2): 647–54

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Millet .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag France, Paris

About this chapter

Cite this chapter

Millet, B. et al. (2014). Stimulation cérébrale profonde, neuro-imagerie et applications thérapeutiques en psychiatrie. In: Apport des neurosciences à la psychiatrie clinique. Springer, Paris. https://doi.org/10.1007/978-2-8178-0505-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-2-8178-0505-4_9

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-8178-0504-7

  • Online ISBN: 978-2-8178-0505-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics