Skip to main content

Role of Endothelial Cells in Tumor Escape from Immunity

  • Chapter
  • First Online:
Molecular Mechanisms of Angiogenesis
  • 1292 Accesses

Abstract

Blood vessel endothelial cells directly participate in the development of solid tumors. Endothelial cells are the main actors of sprouting angiogenesis, the process by which the host organism provides blood vessels to the tumors. Once the vessels are in place, they form a physical barrier which protects tumor cells from the host immune cells and from treatments. There are several ways by which tumors tune their endothelial cells to mediate such escape: expression of leukocyte adhesion receptors by tumor endothelial cells is reduced, preventing the capture of immune cells from the blood circulation. Endothelial cell anergy represses the responses of tumor blood vessels to inflammatory cytokines. Furthermore, endothelial cells naturally produce endogenous repressors of their activation which, in a tumor context, help escaping immune destruction. Several strategies aimed at targeting tumor blood vessels actually promote endothelial cell activation and look promising for treating cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aaltomaa S et al (1992) Lymphocyte infiltrates as a prognostic variable in female breast cancer. Eur J Cancer 28A(4–5):859–864

    Article  CAS  PubMed  Google Scholar 

  • Aird WC (2007) Phenotypic heterogeneity of the endothelium: I. Structure, function, and mechanisms. Circ Res 100(2):158–173

    Article  CAS  PubMed  Google Scholar 

  • Alitalo K, Carmeliet P (2002) Molecular mechanisms of lymphangiogenesis in health and disease. Cancer Cell 1(3):219–227

    Article  CAS  PubMed  Google Scholar 

  • Anastassiou G et al (1996) Platelet endothelial cell adhesion molecule-1 (PECAM-1): a potential prognostic marker involved in leukocyte infiltration of renal cell carcinoma. Oncology 53(2):127–132

    Article  CAS  PubMed  Google Scholar 

  • Aoka Y et al (2002) The embryonic angiogenic factor Del1 accelerates tumor growth by enhancing vascular formation. Microvasc Res 64(1):148–161

    Article  CAS  PubMed  Google Scholar 

  • Arap W, Pasqualini R, Ruoslahti E (1998) Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science 279(5349):377–380

    Article  CAS  PubMed  Google Scholar 

  • Badiwala MV et al (2010) Epidermal growth factor-like domain 7 suppresses intercellular adhesion molecule 1 expression in response to hypoxia/reoxygenation injury in human coronary artery endothelial cells. Circulation 122(11 Suppl):S156–S161

    Article  CAS  PubMed  Google Scholar 

  • Badiwala MV et al (2011) Epidermal growth factor-like domain 7 is a novel inhibitor of neutrophil adhesion to coronary artery endothelial cells injured by calcineurin inhibition. Circulation 124(11 Suppl):S197–S203

    Article  CAS  PubMed  Google Scholar 

  • Balza E et al (2006) Targeted delivery of tumor necrosis factor-alpha to tumor vessels induces a therapeutic T cell-mediated immune response that protects the host against syngeneic tumors of different histologic origin. Clin Cancer Res 12(8):2575–2582

    Article  CAS  PubMed  Google Scholar 

  • Baumheter S et al (1993) Binding of L-selectin to the vascular sialomucin CD34. Science 262(5132):436–438

    Article  CAS  PubMed  Google Scholar 

  • Borsi L et al (2003) Selective targeted delivery of TNFalpha to tumor blood vessels. Blood 102(13):4384–4392

    Article  CAS  PubMed  Google Scholar 

  • Bouzin C et al (2007) Effects of vascular endothelial growth factor on the lymphocyte-endothelium interactions: identification of caveolin-1 and nitric oxide as control points of endothelial cell anergy. J Immunol 178(3):1505–1511

    Article  CAS  PubMed  Google Scholar 

  • Brodt P et al (1997) Liver endothelial E-selectin mediates carcinoma cell adhesion and promotes liver metastasis. Int J Cancer 71(4):612–619

    Article  CAS  PubMed  Google Scholar 

  • Buckanovich RJ et al (2008) Endothelin B receptor mediates the endothelial barrier to T cell homing to tumors and disables immune therapy. Nat Med 14(1):28–36

    Article  CAS  PubMed  Google Scholar 

  • Buehler A et al (2006) cNGR: a novel homing sequence for CD13/APN targeted molecular imaging of murine cardiac angiogenesis in vivo. Arterioscler Thromb Vasc Biol 26(12):2681–2687

    Article  CAS  PubMed  Google Scholar 

  • Calcinotto A et al (2012) Targeting TNF-α to neoangiogenic vessels enhances lymphocyte infiltration in tumors and increases the therapeutic potential of immunotherapy. J Immunol 188(6): 2687–2694

    Article  CAS  PubMed  Google Scholar 

  • Carnemolla B et al (2002) Enhancement of the antitumor properties of interleukin-2 by its targeted delivery to the tumor blood vessel extracellular matrix. Blood 99(5):1659–1665

    Article  PubMed  Google Scholar 

  • Chakrabarti S, Davidge ST (2012) G-protein coupled receptor 30 (GPR30): a novel regulator of endothelial inflammation. PloS One 7(12):e52357

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Choi EY et al (2008) Del-1, an endogenous leukocyte-endothelial adhesion inhibitor, limits inflammatory cell recruitment. Science 322(5904):1101–1104

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Curnis F et al (2000) Enhancement of tumor necrosis factor alpha antitumor immunotherapeutic properties by targeted delivery to aminopeptidase N (CD13). Nat Biotechnol 18(11):1185–1190

    Article  CAS  PubMed  Google Scholar 

  • Curnis F et al (2002) Differential binding of drugs containing the NGR motif to CD13 isoforms in tumor vessels, epithelia, and myeloid cells. Cancer Res 62(3):867–874

    CAS  PubMed  Google Scholar 

  • Curnis F et al (2005) Targeted delivery of IFNgamma to tumor vessels uncouples antitumor from counterregulatory mechanisms. Cancer Res 65(7):2906–2913

    Article  CAS  PubMed  Google Scholar 

  • Dejana E et al (1992) Endothelial leukocyte adhesion molecule-1-dependent adhesion of colon carcinoma cells to vascular endothelium is inhibited by an antibody to Lewis fucosylated type I carbohydrate chain. Lab Invest 66(3):324–330

    CAS  PubMed  Google Scholar 

  • Delfortrie S et al (2011) Egfl7 promotes tumor escape from immunity by repressing endothelial cell activation. Cancer Res 71(23):7176–7186

    Article  CAS  PubMed  Google Scholar 

  • Denkert C et al (2010) Tumor-associated lymphocytes as an independent predictor of response to neoadjuvant chemotherapy in breast cancer. J Clin Oncol 28(1):105–113

    Article  CAS  PubMed  Google Scholar 

  • Diaz R et al (2008) Deregulated expression of miR-106a predicts survival in human colon cancer patients. Genes Chromosomes Cancer 47(9):794–802

    Article  CAS  PubMed  Google Scholar 

  • Dirkx AE et al (2003) Tumor angiogenesis modulates leukocyte-vessel wall interactions in vivo by reducing endothelial adhesion molecule expression. Cancer Res 63(9):2322–2329

    CAS  PubMed  Google Scholar 

  • Dirkx AEM et al (2006) Anti-angiogenesis therapy can overcome endothelial cell anergy and promote leukocyte-endothelium interactions and infiltration in tumors. FASEB J 20(6): 621–630

    Article  CAS  PubMed  Google Scholar 

  • Dryden NH et al (2012) The transcription factor Erg controls endothelial cell quiescence by repressing activity of nuclear factor (NF)-κB p65. J Biol Chem 287(15):12331–12342

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Duran WN, Breslin JW, Sanchez FA (2010) The NO cascade, eNOS location, and microvascular permeability. Cardiovasc Res 87(2):254–261

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fitch MJ et al (2004) Egfl7, a novel epidermal growth factor-domain gene expressed in endothelial cells. Dev Dyn 230(2):316–324

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Frey AB, Monu N (2006) Effector-phase tolerance: another mechanism of how cancer escapes antitumor immune response. J Leukoc Biol 79(4):652–662

    Article  CAS  PubMed  Google Scholar 

  • Gajewski TF, Meng Y, Blank C et al (2006a) Immune resistance orchestrated by the tumor microenvironment. Immunol Rev 213:131–145

    Article  CAS  PubMed  Google Scholar 

  • Gajewski TF, Meng Y, Harlin H (2006b) Immune suppression in the tumor microenvironment. J Immunother 29(3):233–240

    Article  CAS  PubMed  Google Scholar 

  • Gauthier TW, Davenpeck KL, Lefer AM (1994) Nitric oxide attenuates leukocyte-endothelial interaction via P-selectin in splanchnic ischemia-reperfusion. Am J Physiol 267(4 Pt 1): G562–G568

    CAS  PubMed  Google Scholar 

  • Gregorc V et al (2009) Phase Ib study of NGR-hTNF, a selective vascular targeting agent, administered at low doses in combination with doxorubicin to patients with advanced solid tumours. Br J Cancer 101(2):219–224

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gregorc V et al (2010) Phase II study of asparagine-glycine-arginine-human tumor necrosis factor alpha, a selective vascular targeting agent, in previously treated patients with malignant pleural mesothelioma. J Clin Oncol 28(15):2604–2611

    Article  CAS  PubMed  Google Scholar 

  • Gregorc V et al (2011) Phase I study of NGR-hTNF, a selective vascular targeting agent, in combination with cisplatin in refractory solid tumors. Clin Cancer Res 17(7):1964–1972

    Article  CAS  PubMed  Google Scholar 

  • Griffioen AW, Damen CA, Martinotti S et al (1996a) Endothelial intercellular adhesion molecule-1 expression is suppressed in human malignancies: the role of angiogenic factors. Cancer Res 56(5):1111–1117

    CAS  PubMed  Google Scholar 

  • Griffioen AW, Damen CA, Blijham GH et al (1996b) Tumor angiogenesis is accompanied by a decreased inflammatory response of tumor-associated endothelium. Blood 88(2):667–673

    CAS  PubMed  Google Scholar 

  • Hashizume H et al (2000) Openings between defective endothelial cells explain tumor vessel leakiness. Am J Pathol 156(4):1363–1380

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hebbar M et al (2009) E-selectin gene S128R polymorphism is associated with poor prognosis in patients with stage II or III colorectal cancer. Eur J Cancer 45(10):1871–1876

    Article  CAS  PubMed  Google Scholar 

  • Hellwig SM et al (1997) Endothelial CD34 is suppressed in human malignancies: role of angiogenic factors. Cancer Lett 120(2):203–211

    Article  CAS  PubMed  Google Scholar 

  • Herberman RB et al (1975) Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic and allogeneic tumors. II. Characterization of effector cells. Int J Cancer 16(2):230–239

    Article  CAS  PubMed  Google Scholar 

  • Hidai C et al (1998) Cloning and characterization of developmental endothelial locus-1: an embryonic endothelial cell protein that binds the alphavbeta3 integrin receptor. Genes Dev 12(1):21–33

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Huang CH et al (2010) Expression and clinical significance of EGFL7 in malignant glioma. J Cancer Res Clin Oncol 136(11):1737–1743

    Article  CAS  PubMed  Google Scholar 

  • Hung K et al (1998) The central role of CD4(+) T cells in the antitumor immune response. J Exp Med 188(12):2357–2368

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Iademarco MF et al (1992) Characterization of the promoter for vascular cell adhesion molecule-1 (VCAM-1). J Biol Chem 267(23):16323–16329

    CAS  PubMed  Google Scholar 

  • Khan BV et al (1996) Nitric oxide regulates vascular cell adhesion molecule 1 gene expression and redox-sensitive transcriptional events in human vascular endothelial cells. Proc Natl Acad Sci U S A 93(17):9114–9119

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim R, Emi M, Tanabe K (2006) Cancer immunosuppression and autoimmune disease: beyond immunosuppressive networks for tumour immunity. Immunology 119(2):254–264

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kuzu I et al (1993) Expression of adhesion molecules on the endothelium of normal tissue vessels and vascular tumors. Lab Invest 69(3):322–328

    CAS  PubMed  Google Scholar 

  • Lelamali K et al (2001) Effects of nitric oxide and peroxynitrite on endotoxin-induced leukocyte adhesion to endothelium. J Cell Physiol 188(3):337–342

    Article  CAS  PubMed  Google Scholar 

  • Lelièvre E et al (2008) VE-statin/egfl7 regulates vascular elastogenesis by interacting with lysyl oxidases. EMBO J 27(12):1658–1670

    Article  PubMed Central  PubMed  Google Scholar 

  • Li B et al (2006) Vascular endothelial growth factor blockade reduces intratumoral regulatory T cells and enhances the efficacy of a GM-CSF-secreting cancer immunotherapy. Clin Cancer Res 12(22):6808–6816

    Article  CAS  PubMed  Google Scholar 

  • Maeng Y-S et al (2006) ERK is an anti-inflammatory signal that suppresses expression of NF-kappaB-dependent inflammatory genes by inhibiting IKK activity in endothelial cells. Cell Signal 18(7):994–1005

    Article  CAS  PubMed  Google Scholar 

  • Makgoba MW et al (1988) ICAM-1 a ligand for LFA-1-dependent adhesion of B, T and myeloid cells. Nature 331(6151):86–88

    Article  CAS  PubMed  Google Scholar 

  • Mantovani A, Sica A (2010) Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr Opin Immunol 22(2):231–237

    Article  CAS  PubMed  Google Scholar 

  • Martinelli R et al (2009) ICAM-1-mediated endothelial nitric oxide synthase activation via calcium and AMP-activated protein kinase is required for transendothelial lymphocyte migration. Mol Biol Cell 20(3):995–1005

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Martinet L et al (2011) Human solid tumors contain high endothelial venules: association with T- and B-lymphocyte infiltration and favorable prognosis in breast cancer. Cancer Res 71(17): 5678–5687

    Article  CAS  PubMed  Google Scholar 

  • Marzo AL et al (2000) Tumor-specific CD4+ T cells have a major “post-licensing” role in CTL mediated anti-tumor immunity. J Immunol 165(11):6047–6055

    Article  CAS  PubMed  Google Scholar 

  • Mazzone M et al (2009) Heterozygous deficiency of PHD2 restores tumor oxygenation and inhibits metastasis via endothelial normalization. Cell 136(5):839–851

    Article  CAS  PubMed  Google Scholar 

  • Melder RJ et al (1996) During angiogenesis, vascular endothelial growth factor and basic fibroblast growth factor regulate natural killer cell adhesion to tumor endothelium. Nat Med 2(9): 992–997

    Article  CAS  PubMed  Google Scholar 

  • Muller WA (2009) Mechanisms of transendothelial migration of leukocytes. Circ Res 105(3): 223–230

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nooijen PT et al (1998) Endothelial P-selectin expression is reduced in advanced primary melanoma and melanoma metastasis. Am J Pathol 152(3):679–682

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nosho K et al (2010) Tumour-infiltrating T-cell subsets, molecular changes in colorectal cancer, and prognosis: cohort study and literature review. J Pathol 222(4):350–366

    Article  PubMed Central  PubMed  Google Scholar 

  • Osborn L et al (1989) Direct expression cloning of vascular cell adhesion molecule 1, a cytokine-induced endothelial protein that binds to lymphocytes. Cell 59(6):1203–1211

    Article  CAS  PubMed  Google Scholar 

  • Parker LH et al (2004) The endothelial-cell-derived secreted factor Egfl7 regulates vascular tube formation. Nature 428(6984):754–758

    Article  CAS  PubMed  Google Scholar 

  • Pasqualini R et al (2000) Aminopeptidase N is a receptor for tumor-homing peptides and a target for inhibiting angiogenesis. Cancer Res 60(3):722–727

    CAS  PubMed  Google Scholar 

  • Peeters CFJM et al (2005) Progressive loss of endothelial P-selectin expression with increasing malignancy in colorectal cancer. Lab Invest 85(2):248–256

    Article  CAS  PubMed  Google Scholar 

  • Penta K et al (1999) Del1 induces integrin signaling and angiogenesis by ligation of alphaVbeta3. J Biol Chem 274(16):11101–11109

    Article  CAS  PubMed  Google Scholar 

  • Philippin-Lauridant G et al (2013) Expression of Egfl7 correlates with low-grade invasive lesions in human breast cancer. Int J Oncol 42(4):1367–1375

    CAS  PubMed  Google Scholar 

  • Piali L et al (1995) Endothelial vascular cell adhesion molecule 1 expression is suppressed by melanoma and carcinoma. J Exp Med 181(2):811–816

    Article  CAS  PubMed  Google Scholar 

  • Poggi A, Zocchi MR (2006) Mechanisms of tumor escape: role of tumor microenvironment in inducing apoptosis of cytolytic effector cells. Arch Immunol Ther Exp 54(5):323–333

    Article  CAS  Google Scholar 

  • Prokopiou EM, Ryder SA, Walsh JJ (2013) Tumour vasculature targeting agents in hybrid/conjugate drugs. Angiogenesis 16(3):503–524

    Article  CAS  PubMed  Google Scholar 

  • Qian BZ, Pollard JW (2010) Macrophage diversity enhances tumor progression and metastasis. Cell 141(1):39–51

    Article  CAS  PubMed  Google Scholar 

  • Rajesh M et al (2007) CB2-receptor stimulation attenuates TNF-alpha-induced human endothelial cell activation, transendothelial migration of monocytes, and monocyte-endothelial adhesion. Am J Physiol 293(4):H2210–H2218

    CAS  Google Scholar 

  • Rao RM et al (2007) Endothelial-dependent mechanisms of leukocyte recruitment to the vascular wall. Circulation Res 101(3):234–247

    Article  CAS  PubMed  Google Scholar 

  • Rothlein R et al (1988) Induction of intercellular adhesion molecule 1 on primary and continuous cell lines by pro-inflammatory cytokines. Regulation by pharmacologic agents and neutralizing antibodies. J Immunol 141(5):1665–1669

    CAS  PubMed  Google Scholar 

  • Sacchi A et al (2004) Crucial role for interferon gamma in the synergism between tumor vasculature-targeted tumor necrosis factor alpha (NGR-TNF) and doxorubicin. Cancer Res 64(19):7150–7155

    Article  CAS  PubMed  Google Scholar 

  • Sacchi A et al (2006) Synergistic antitumor activity of cisplatin, paclitaxel, and gemcitabine with tumor vasculature-targeted tumor necrosis factor-alpha. Clinical Cancer Res 12(1):175–182

    Article  CAS  Google Scholar 

  • Schrier PI et al (1983) Expression of class I major histocompatibility antigens switched off by highly oncogenic adenovirus 12 in transformed rat cells. Nature 305(5937):771–775

    Article  CAS  PubMed  Google Scholar 

  • Shankaran V et al (2001) IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 410(6832):1107–1111

    Article  CAS  PubMed  Google Scholar 

  • Shioi K et al (2006) Vascular cell adhesion molecule 1 predicts cancer-free survival in clear cell renal carcinoma patients. Clin Cancer Res 12(24):7339–7346

    Article  CAS  PubMed  Google Scholar 

  • Shrikant P, Mescher MF (1999) Control of syngeneic tumor growth by activation of CD8+ T cells: efficacy is limited by migration away from the site and induction of nonresponsiveness. J Immunol 162(5):2858–2866

    CAS  PubMed  Google Scholar 

  • Soncin F et al (2003) VE-statin, an endothelial repressor of smooth muscle cell migration. EMBO J 22(21):5700–5711

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sperone A et al (2011) The transcription factor Erg inhibits vascular inflammation by repressing NF-kappaB activation and proinflammatory gene expression in endothelial cells. Arterioscler Thromb Vasc Biol 31(1):142–150

    Article  CAS  PubMed  Google Scholar 

  • Springer TA (1994) Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 76(2):301–314

    Article  CAS  PubMed  Google Scholar 

  • Stewart MP, Cabanas C, Hogg N (1996) T cell adhesion to intercellular adhesion molecule-1 (ICAM-1) is controlled by cell spreading and the activation of integrin LFA-1. J Immunol 156(5):1810–1817

    CAS  PubMed  Google Scholar 

  • Suzuki Y et al (1995) Cell adhesion molecule expression by vascular endothelial cells as an immune/inflammatory reaction in human colon carcinoma. Jpn J Cancer Res 86(6):585–593

    Article  CAS  PubMed  Google Scholar 

  • Thanopoulou E et al (2012) The single nucleotide polymorphism g.1548A > G (K469E) of the ICAM-1 gene is associated with worse prognosis in non-small cell lung cancer. Tumour Biol 33(5):1429–1436

    Article  CAS  PubMed  Google Scholar 

  • Tremblay P-L, Huot J, Auger FA (2008) Mechanisms by which E-selectin regulates diapedesis of colon cancer cells under flow conditions. Cancer Res 68(13):5167–5176

    Article  CAS  PubMed  Google Scholar 

  • Voraberger G, Schäfer R, Stratowa C (1991) Cloning of the human gene for intercellular adhesion molecule 1 and analysis of its 5’-regulatory region. Induction by cytokines and phorbol ester. J Immunol 147(8):2777–2786

    CAS  PubMed  Google Scholar 

  • Wang H-T et al (2012) Calreticulin promotes tumor lymphocyte infiltration and enhances the antitumor effects of immunotherapy by up-regulating the endothelial expression of adhesion molecules. Int J Cancer 130(12):2892–2902

    Article  CAS  PubMed  Google Scholar 

  • Welti J et al (2013) Recent molecular discoveries in angiogenesis and antiangiogenic therapies in cancer. J Clin Invest 123(8):3190–3200

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wu NZ et al (1992) Diminished leukocyte-endothelium interaction in tumor microvessels. Cancer Res 52(15):4265–4268

    CAS  PubMed  Google Scholar 

  • Wu F et al (2009) Novel role for epidermal growth factor-like domain 7 in metastasis of human hepatocellular carcinoma. Hepatology 50(6):1839–1850

    Article  CAS  PubMed  Google Scholar 

  • Yamada N et al (1995) Role of SPan-1 antigen in adhesion of human colon cancer cells to vascular endothelium. Dig Dis Sci 40(5):1005–1012

    Article  CAS  PubMed  Google Scholar 

  • Yuan L et al (2009) Antiinflammatory effects of the ETS factor ERG in endothelial cells are mediated through transcriptional repression of the interleukin-8 gene. Circ Res 104(9):1049–1057

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang W et al (2013) Sphingosine-1-phosphate receptor-2 mediated NFκB activation contributes to tumor necrosis factor-α induced VCAM-1 and ICAM-1 expression in endothelial cells. Prostaglandins Other Lipid Mediat 106:62–71

    Article  CAS  PubMed  Google Scholar 

  • Zhou Z, Connell MC, MacEwan DJ (2007) TNFR1-induced NF-kappaB, but not ERK, p38MAPK or JNK activation, mediates TNF-induced ICAM-1 and VCAM-1 expression on endothelial cells. Cell Signal 19(6):1238–1248

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrice Soncin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag France

About this chapter

Cite this chapter

Soncin, F. (2014). Role of Endothelial Cells in Tumor Escape from Immunity. In: Feige, JJ., Pagès, G., Soncin, F. (eds) Molecular Mechanisms of Angiogenesis. Springer, Paris. https://doi.org/10.1007/978-2-8178-0466-8_15

Download citation

Publish with us

Policies and ethics