Skip to main content

Quoi de neuf en technologie IRM 3 Tesla ?

  • Conference paper
Imagerie en coupes du cœur et des vaisseaux

Résumé

Le champ de 1,5 Tesla constitue le standard en IRM cardiovasculaire. Avoir accès à une machine 3 Tesla a-t-il un intérêt?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. Michaely HJ, Nael K, Schoenberg SO, et al. (2006) Analysis of cardiac function—comparison between 1.5 Tesla and 3.0 Tesla cardiac cine magnetic resonance imaging: preliminary experience. Invest Radiol 41(2): 133–40

    Article  PubMed  Google Scholar 

  2. Gutberlet M, Noeske R, Schwinge K, et al. (2006) Comprehensive cardiac magnetic resonance imaging at 3.0 Tesla: feasibility and implications for clinical applications. Invest Radiol 41(2): 154–67

    Article  PubMed  Google Scholar 

  3. Lobodzinski SS (2012) Recent innovations in the development of magnetic resonance imaging conditional pacemakers and implantable cardioverter-defibrillators. Cardiol J 19(1): 98–104

    Article  PubMed  Google Scholar 

  4. Gimbel JR (2009) Unexpected asystole during 3T magnetic resonance imaging of a pacemaker-dependent patient with a ‘modern’ pacemaker. Europace 11(9): 1241–2. Epub 2009 Jun 25

    Article  PubMed  Google Scholar 

  5. Hendel RC, Patel MR, Kramer CM, et al. (2006) ACCF/ACR/SCCT/SCMR/ASNC/NASCI/SCAI/SIR 2006 appropriateness criteria for cardiac computed tomography and cardiac magnetic resonance imaging: a report of the American College of Cardiology Foundation Quality Strategic Directions Committee Appropriateness Criteria Working Group, American College of Radiology, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, American Society of Nuclear Cardiology, North American Society for Cardiac Imaging, Society for Cardiovascular Angiography and Interventions, and Society of Interventional Radiology. J Am Coll Cardiol 48(7): 1475–97

    Article  PubMed  Google Scholar 

  6. Finn JP, Nael K, Deshpande V, et al. (2006) Cardiac MR imaging: state of the technology. Radiology 241(2): 338–54

    Article  PubMed  Google Scholar 

  7. Hudsmith LE, Petersen SE, Tyler DJ, et al. (2006) Determination of cardiac volumes and mass with FLASH and SSFP cine sequences at 1.5 vs. 3 Tesla: a validation study. J Magn Reson Imaging 24(2): 312–8

    Article  PubMed  Google Scholar 

  8. Matthew S, Gandy SJ, Nicholas RS, et al. (2012) Quantitative analysis of cardiac left ventricular variables obtained by MRI at 3 T: a pre-and post-contrast comparison. Br J Radiol 85(1015): e343–7

    Article  PubMed  CAS  Google Scholar 

  9. Walcher T, Ikuye K, Rottbauer W, et al. (2012) Is contrast-enhanced cardiac magnetic resonance imaging at 3 T superior to 1.5 T for detection of coronary artery disease? Int J Cardiovasc Imaging 24: 24

    Google Scholar 

  10. 10. Shin T, Hu HH, Pohost GM, Nayak KS (2008) Three dimensional first-pass myocardial perfusion imaging at 3T: feasibility study. J Cardiovasc Magn Reson 10: 57

    Article  PubMed  Google Scholar 

  11. Kim RJ, Fieno DS, Parrish TB, et al. (1999) Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation 100(19): 1992–2002

    Article  PubMed  CAS  Google Scholar 

  12. Ordovas KG, Higgins CB (2011) Delayed contrast enhancement on MR images of myocardium: past, present, future. Radiology 261(2): 358–74

    Article  PubMed  Google Scholar 

  13. Kim RJ, Albert TS, Wible JH, et al. (2008) Performance of delayed-enhancement magnetic resonance imaging with gadoversetamide contrast for the detection and assessment of myocardial infarction: an international, multicenter, double-blinded, randomized trial. Circulation 117(5): 629–37

    Article  PubMed  Google Scholar 

  14. Cheng AS, Robson MD, Neubauer S, Selvanayagam JB (2007) Irreversible myocardial injury: assessment with cardiovascular delayed-enhancement MR imaging and comparison of 1.5 and 3.0 T—initial experience. Radiology 242(3): 735–42

    Article  PubMed  Google Scholar 

  15. Klumpp B, Fenchel M, Hoevelborn T, et al. (2006) Assessment of myocardial viability using delayed enhancement magnetic resonance imaging at 3.0 Tesla. Invest Radiol 41(9): 661–7

    Article  PubMed  Google Scholar 

  16. Meloni A, Positano V, Keilberg P, et al. (2012) Feasibility, reproducibility, and reliability for the T⋆(2) iron evaluation at 3 T in comparison with 1.5 T. Magn Reson Med 68(2): 543–51

    Article  PubMed  CAS  Google Scholar 

  17. Guo H, Au WY, Cheung JS, et al. (2009) Myocardial T2 quantitation in patients with iron overload at 3 Tesla. J Magn Reson Imaging 30(2): 394–400

    Article  PubMed  CAS  Google Scholar 

  18. Iles L, Pfluger H, Phrommintikul A, et al. (2008) Evaluation of diffuse myocardial fibrosis in heart failure with cardiac magnetic resonance contrast-enhanced T1 mapping. J Am Coll Cardiol 52(19): 1574–80

    Article  PubMed  Google Scholar 

  19. Messroghli DR, Radjenovic A, Kozerke S, et al. (2004) Modified Look-Locker inversion recovery (MOLLI) for high-resolution T1 mapping of the heart. Magn Reson Med 52(1): 141–6

    Article  PubMed  Google Scholar 

  20. Dall’Armellina E, Piechnik SK, Ferreira VM, et al. (2012) Cardiovascular magnetic resonance by non contrast T1-mapping allows assessment of severity of injury in acute myocardial infarction. J Cardiovasc Magn Reson 14:15

    Article  Google Scholar 

  21. Koktzoglou I, Chung YC, Mani V, et al. (2006) Multislice dark-blood carotid artery wall imaging: a 1.5 T and 3.0 T comparison. J Magn Reson Imaging 23(5): 699–705

    Article  PubMed  Google Scholar 

  22. Lindsay AC, Biasiolli L, Lee JM, et al. (2012) Plaque features associated with increased cerebral infarction after minor stroke and TIA: a prospective, case-control, 3-T carotid artery MR imaging study. JACC Cardiovasc Imaging 5(4): 388–96

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Cassagnes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Paris

About this paper

Cite this paper

Cassagnes, L. et al. (2013). Quoi de neuf en technologie IRM 3 Tesla ?. In: Boyer, L., Guéret, P. (eds) Imagerie en coupes du cœur et des vaisseaux. Springer, Paris. https://doi.org/10.1007/978-2-8178-0435-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-2-8178-0435-4_2

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-8178-0434-7

  • Online ISBN: 978-2-8178-0435-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics