Skip to main content

Les thérapeutiques infectieuses non antibiotiques

  • Chapter
Infectiologie en réanimation

Part of the book series: Références en réanimation. Collection de la SRLF ((SRLF))

  • 1016 Accesses

Résumé

Officiellement découverte par Sir Alexander Fleming le 3 septembre 1928, la pénicilline est utilisée de façon très large à partir de 1941. Cette première molécule antibiotique a ouvert la porte au développement d’une multitude de familles qui a abouti à ce que l’on pourrait décrire comme un âge d’or de l’antibiothérapie. La résistance bactérienne était certes déjé une préoccupation, mais le nombre et la variété des composés introduits permettaient de garder une confiance absolue dans cette classe médicamenteuse. Les années 2000 ont sonné le glas de cette insouciance où le bon usage pouvait paraître une futilité, la multirésistance voire la panrésistance sont apparues aussi vite que le pipeline de nouvelles molécules s’est épuisé. Face à cette menace qui est maintenant bien installée dans nos institutions hospitalières, la réponse ne peut être monomorphe. Nous avons ainsi appris à respecter les molécules disponibles, à économiser les nouvelles, à faire du bon usage une priorité nationale et internationale. En parallèle, la place laissée par l’absence de nouvelles molécules a été rapidement comblée par l’apparition de thérapeutiques alternatives, des traitements anti-infectieux non antibiotiques. Les approches sont multiples, mais la plupart d’entre elles sont issues d’une recherche fondamentale qui s’est employée à préciser les déterminants majeurs de la relation hôtepathogène.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. Kaufmann SHE (2007) The contribution of immunology to the rational design of novel antibacterial vaccines. Nat Rev Microbiol 5(7): 491–504

    Article  PubMed  CAS  Google Scholar 

  2. LaRocca TJ, Katona LI, Thanassi DG, Benach JL (2008) Bactericidal action of a complement-independent antibody against relapsing fever Borrelia resides in its variable region. J Immunol 180(9): 6222–8

    PubMed  CAS  Google Scholar 

  3. Casadevall A. Antibody-mediated regulation of cellular immunity and the inflammatory response. Trends in Immunology. Elsevier Ltd; 2003 Jan. 1

    Google Scholar 

  4. Taborda CP, Rivera J, Zaragoza O, Casadevall A (2003) More is not necessairly better: prozone-like effects in passive immunization with IgG. J Immunol 170(7): 3621–30

    PubMed  CAS  Google Scholar 

  5. Lindorfer MA, Nardin A, Foley PL, et al. (2001) Targeting of Pseudomonas aeruginosa in the bloodstream with bispecific monoclonal antibodies. J Immunol 167(4): 2240–9

    PubMed  CAS  Google Scholar 

  6. Mohamed N, Clagett M, Li J, et al. (2005) A high-affinity monoclonal antibody to anthrax protective antigen passively protects rabbits before and after aerosolized Bacillus anthracis spore challenge. Infect Immun 73(2): 795–802

    Article  PubMed  CAS  Google Scholar 

  7. Gyimesi E, Bankovich AJ, Schuman TA, et al. (2004) Staphylococcus aureus bound to complement receptor 1 on human erythrocytes by bispecific monoclonal antibodies is phagocytosed by acceptor macrophages. Immunology Letters 95(2): 185–92

    Article  PubMed  CAS  Google Scholar 

  8. Schneemann A, Manchester M (2009) Anti-toxin antibodies in prophylaxis and treatment of inhalation anthrax. Future microbiology 4(1): 35–43

    Article  PubMed  CAS  Google Scholar 

  9. Plotkin S, Grabenstein JD (2008) Countering Anthrax: vaccines and immunoglobulins. Clin Infect Dis 46(1): 129–36

    Article  Google Scholar 

  10. Kulshreshtha P, Bhatnagar R (2011) Inhibition of anthrax toxins with a bispecific monoclonal antibody that cross reacts with edema factor as well as lethal factor of Bacillus anthracis. Molecular Immunology 48(15–16): 1958–65

    Article  PubMed  CAS  Google Scholar 

  11. Bitzan M, Poole R, Mehran M, et al. (2009) Safety and pharmacokinetics of chimeric anti-Shiga toxin 1 and anti-Shiga toxin 2 monoclonal antibodies in healthy volunteers. Antimicrob Agents Chemother 53(7): 3081–7

    Article  PubMed  CAS  Google Scholar 

  12. Dowling TC, Chavaillaz PA, Young DG, et al. (2005) Phase 1 safety and pharmacokinetic study of chimeric murine-human monoclonal antibody c Stx2 administered intravenously to healthy adult volunteers. Antimicrob Agents Chemother 49(5): 1808–12

    Article  PubMed  CAS  Google Scholar 

  13. Bitzan M (2009) Treatment options for HUS secondary to Escherichia coli O157: H7. Kidney Int 75: S62–6

    Article  Google Scholar 

  14. Lowy I, Molrine DC, Leav BA, et al. (2010) Treatment with monoclonal antibodies against Clostridium difficile toxins. N Engl J Med 362(3): 197–205

    Article  PubMed  CAS  Google Scholar 

  15. Weisman LE, Fischer GW, Thackray HM, et al. (2009) Safety and pharmacokinetics of a chimerized anti-lipoteichoic acid monoclonal antibody in healthy adults. International Immunopharmacology 9(5): 639–44

    Article  PubMed  CAS  Google Scholar 

  16. Weisman L, Thackray H, Steinhorn R (2011) A randomized study of a monoclonal antibody (Pagibaximab) to prevent staphylococcal sepsis. Pediatrics

    Google Scholar 

  17. Hetherington S, Texter M, Wenzel E, et al. (2006) Phase I dose escalation study to evaluate the safety and pharmacokinetic profile of tefibazumab in subjects with endstage renal disease requiring hemodialysis. Antimicrob Agents Chemother 50(10): 3499–500

    Article  PubMed  CAS  Google Scholar 

  18. Weems JJ, Steinberg JP, Filler S, et al. (2006) Phase II, randomized, double-blind, multicenter study comparing the safety and pharmacokinetics of tefibazumab to placebo for treatment of Staphylococcus aureus bacteremia. Antimicrob Agents Chemother 50(8): 2751–5

    Article  PubMed  CAS  Google Scholar 

  19. Ragle BE, Bubeck Wardenburg J (2009) Anti-alpha-hemolysin monoclonal antibodies mediate protection against Staphylococcus aureus pneumonia. Infect Immun 77(7): 2712–8

    Article  PubMed  CAS  Google Scholar 

  20. Larsen RA, Pappas PG, Perfect J, et al. (2005) Phase I evaluation of the safety and pharmacokinetics of murine-derived anticryptococcal antibody 18b7 in subjects with treated cryptococcal meningitis. Antimicrob Agents Chemother 49(3): 952–8

    Article  PubMed  CAS  Google Scholar 

  21. Matthews R, Rigg G, Hodgetts S (2003) Preclinical assessment of the efficacy of Mycograb, a human recombinant antibody against fungal HSP90. Antimicrobial agents

    Google Scholar 

  22. Matthews RC, Burnie JP, Tabaqchali S (1987) Isolation of immunodominant antigens from sera of patients with systemic candidiasis and characterization of serological response to Candida albicans. J Clin Microbiol. Am Soc Microbiol; 1987 Jan. 1; 25(2): 230–7

    CAS  Google Scholar 

  23. Pachl J, Svoboda P, Jacobs F, et al. (2006) A randomized, blinded, multicenter trial of lipid-associated amphotericin b alone versus in combination with an antibody-based inhibitor of heat shock protein 90 in patients with invasive candidiasis. Clin Infect Dis 42(10): 1404–13

    Article  PubMed  CAS  Google Scholar 

  24. Lazar H, Horn MP, Zuercher AW, et al. (2009) Pharmacokinetics and safety profile of the human anti-Pseudomonas aeruginosa serotype o11 immunoglobulin M monoclonal antibody KBPA-101 in healthy volunteers. Antimicrob Agents Chemother 53(8): 3442–6

    Article  PubMed  CAS  Google Scholar 

  25. Kaufmann GF, Park J, Janda KD (2008) Bacterial quorum sensing: a new target for anti-infective immunotherapy. Expert Opin Biol Ther 8(6): 719–24

    Article  PubMed  CAS  Google Scholar 

  26. Park J, Jagasia R, Kaufmann GF, et al. Infection control by antibody disruption of bacterial quorum sensing signaling. Chemistry & Biology 14(10): 1119–27

    Google Scholar 

  27. Sawa T, Yahr TL, Ohara M, et al. (1999) Active and passive immunization with the Pseudomonas V antigen protects against type III intoxication and lung injury. Nat Med 5(4): 392–8

    Article  PubMed  CAS  Google Scholar 

  28. Neely AN, Holder IA, Wiener-Kronish JP, Sawa T (2005) Passive anti-PcrV treatment protects burned mice against Pseudomonas aeruginosa challenge. Burns 31(2): 153–8

    Article  PubMed  Google Scholar 

  29. Roy Burman A, Savel RH, Racine S, et al. (2001) Type III protein secretion is associated with death in lower respiratory and systemic Pseudomonas aeruginosa infections. J Infect Dis 183(12): 1767–74

    Article  PubMed  CAS  Google Scholar 

  30. Shime N, Sawa T, Fujimoto J, et al. (2001) Therapeutic administration of anti-PcrV F (ab») (2) in sepsis associated with Pseudomonas aeruginosa. J Immunol 167(10): 5880–6

    PubMed  CAS  Google Scholar 

  31. Faure K, Fujimoto J, Shimabukuro DW, et al. (2003) Effects of monoclonal anti-PcrV antibody on Pseudomonas aeruginosa-induced acute lung injury in a rat model. Journal of immune based therapies and vaccines 1(1): 2

    Article  PubMed  Google Scholar 

  32. Frank DW, Vallis A, Wiener-Kronish JP, et al. (2002) Generation and characterization of a protective monoclonal antibody to Pseudomonas aeruginosa PcrV. J Infect Dis 186(1): 64–73

    Article  PubMed  CAS  Google Scholar 

  33. Baer M, Sawa T, Flynn P, et al. (2009) An engineered human antibody fab fragment specific for Pseudomonas aeruginosa PcrV antigen has potent antibacterial activity. Infect Immun 77(3): 1083–90

    Article  PubMed  CAS  Google Scholar 

  34. Francois B, Luyt CE, Dugard A, et al. (2012) Safety and pharmacokinetics of an anti-PcrV PEGylated monoclonal antibody fragment in mechanically ventilated patients colonized with Pseudomonas aeruginosa: A randomized, double-blind, placebo-controlled trial. Crit Care Med

    Google Scholar 

  35. Al-Hamad A, Burnie J, Upton M (2011) Enhancement of antibiotic susceptibility of Stenotrophomonas maltophiliausing a polyclonal antibody developed against an ABC multidrug efflux pump. Can J Microbiol 57(10): 820–8

    Article  PubMed  CAS  Google Scholar 

  36. Song Y, Baer M, Srinivasan R, et al. PcrV antibody-antibiotic combination improves survival in Pseudomonas aeruginosa-infected mice. Eur J Clin Microbiol Infect Dis

    Google Scholar 

  37. Antunes LCM, Ferreira RBR, Buckner MMC, Finlay BB (2010) Quorum sensing in bacterial virulence. Microbiology 156(8): 2271–82

    Article  PubMed  CAS  Google Scholar 

  38. Cirioni O, Ghiselli R, Minardi D, et al. (2007) RNAIII-inhibiting peptide affects biofilm formation in a rat model of staphylococcal ureteral stent infection. Antimicrob Agents Chemother 51(12): 4518–20

    Article  PubMed  CAS  Google Scholar 

  39. Le Berre R, Nguyen S, Nowak E, et al. (2008) Quorum-sensing activity and related virulence factor expression in clinically pathogenic isolates of Pseudomonas aeruginosa. Clin Microbiol Infect 14(4): 337–43

    Article  Google Scholar 

  40. Amara N, Krom BP, Kaufmann GF, Meijler MM (2011) Macromolecular inhibition of quorum sensing: enzymes, antibodies, and beyond. Chem Rev 111(1): 195–208

    Article  PubMed  CAS  Google Scholar 

  41. Cushnie TPT, Lamb AJ (2011) Recent advances in understanding the antibacterial properties of flavonoids. Int J Antimicrob Agents 38(2): 99–107

    Article  PubMed  CAS  Google Scholar 

  42. Köhler T, Buckling A, van Delden C (2009) Cooperation and virulence of clinical Pseudomonas aeruginosa populations. Proc Natl Acad Sci USA 106(15): 6339–44

    Article  PubMed  Google Scholar 

  43. Smyth AR, Cifelli PM, Ortori CA, et al. (2010) Garlic as an inhibitor of Pseudomonas aeruginosaquorum sensing in cystic fibrosis-a pilot randomized controlled trial. Pediatr Pulmonol n/a-n/a

    Google Scholar 

  44. O’Flaherty S, Ross RP, Coffey A (2009) Bacteriophage and their lysins for elimination of infectious bacteria. FEMS Microbiology Reviews 33(4): 801–19

    Article  CAS  Google Scholar 

  45. Ryan EM, Gorman SP, Donnelly RF, Gilmore BF (2011) Recent advances in bacteriophage therapy: how delivery routes, formulation, concentration and timing influence the success of phage therapy. Journal of Pharmacy and Pharmacology 63(10): 1253–64

    Article  PubMed  CAS  Google Scholar 

  46. Abedon ST, Kuhl SJ, Blasdel BG, Kutter EM (2011) Phage treatment of human infections, bacteriophage 1(2): 66–85

    Article  PubMed  Google Scholar 

  47. Kutateladze M, Adamia R (2008) Phage therapy experience at the Eliava Institute✩. Med Mal Infect 38(8): 426–30

    Article  PubMed  CAS  Google Scholar 

  48. Slopek S, Weber-Dabrowska B, Dabrowski M, Kucharewicz-Krukowska A (1987) Results of bacteriophage treatment of suppurative bacterial infections in the years 1981–1986. Arch Immunol Ther Exp (Warsz) 35(5): 569–83

    CAS  Google Scholar 

  49. Weber-Dabrowska B, Mulczyk M, Górski A (2000) Bacteriophage therapy of bacterial infections: an update of our institute’s experience. Arch Immunol Ther Exp (Warsz) 48(6): 547–51

    CAS  Google Scholar 

  50. Cisto M, Dabrowski M, Weber-Dabrowska B, Woytoń A (1987) Bacteriophage treatment of suppurative skin infections. Arch Immunol Ther Exp (Warsz) 35(2): 175–83

    Google Scholar 

  51. Weber-Dabrowska B, Mulczyk M, Górski A (2003) Bacteriophages as an efficient therapy for antibiotic-resistant septicemia in man. Transplant Proc 35(4): 1385–6

    Article  PubMed  CAS  Google Scholar 

  52. Mahony J, McAuliffe O, Ross RP, van Sinderen D (2011) Bacteriophages as biocontrol agents of food pathogens. Current Opinion in Biotechnology. Elsevier Ltd; 2011 Apr. 1; 22(2): 157–63

    Google Scholar 

  53. Rhoads DD, Wolcott RD, Kuskowski MA, et al. (2009) Bacteriophage therapy of venous leg ulcers in humans: results of a phase I safety trial. J Wound Care 18(6): 237–8, 240–3

    PubMed  CAS  Google Scholar 

  54. Wright A, Hawkins CH, Anggård EE, Harper DR (2009) A controlled clinical trial of a therapeutic bacteriophage preparation in chronic otitis due to antibiotic-resistant Pseudomonas aeruginosa; a preliminary report of efficacy. Clinical otolaryngology: official journal of ENT-UK; official journal of Netherlands Society for Oto-Rhino-Laryngology & Cervico-Facial Surgery 34(4): 349–57

    Article  CAS  Google Scholar 

  55. Rolain JM, Fancello L, Desnues C, Raoult D (2011) Bacteriophages as vehicles of the resistome in cystic fibrosis. J Antimicrob Chemother 66(11): 2444–7

    Article  PubMed  CAS  Google Scholar 

  56. WHO F. Guidelines for the evaluation of probiotics in food. 30AD

    Google Scholar 

  57. Ghosh S, van Heel D, Playford RJ (2004) Probiotics in inflammatory bowel disease: is it all gut flora modulation? Gut 53(5): 620–2

    Article  PubMed  CAS  Google Scholar 

  58. Isolauri E (2001) Probiotics in human disease. Am J Clin Nutr 73(6): 1142S–1146S

    PubMed  CAS  Google Scholar 

  59. Akisu M, Baka M, Yalaz M, et al. (2003) Supplementation with Saccharomyces boulardii ameliorates hypoxia/reoxygenation-induced necrotizing enterocolitis in young mice. Eur J Pediatr Surg 13(5): 319–23

    Article  PubMed  CAS  Google Scholar 

  60. Gionchetti P, Lammers KM, Rizzello F, Campieri M (2005) Probiotics and barrier function in colitis. Gut 54(7): 898–900

    Article  PubMed  CAS  Google Scholar 

  61. Majamaa H, Isolauri E (1997) Probiotics: a novel approach in the management of food allergy. J Allergy Clin Immunol 99(2): 179–85

    Article  PubMed  CAS  Google Scholar 

  62. Zamfir M, Callewaert R, Cornea PC, et al. (2000) Purification and characterization of a bacteriocin produced by Lactobacillus acidophilus IBB 801. J Appl Microbiol 87(6): 923–31

    Article  Google Scholar 

  63. Aiba Y, Suzuki N, Kabir AM, et al. (1998) Lactic acid-mediated suppression of Helicobacter pylori by the oral administration of Lactobacillus salivarius as a probiotic in a gnotobiotic murine model. Am J Gastroenterol 93(11): 2097–101

    Article  PubMed  CAS  Google Scholar 

  64. Otte JM, Podolsky DK (2004) Functional modulation of enterocytes by gram-positive and gram-negative microorganisms. Am J Physiol Gastrointest Liver Physiol 286(4): G613–26

    Article  PubMed  CAS  Google Scholar 

  65. Bernet MF, Brassart D, Neeser JR, Servin AL (1994) Lactobacillus acidophilus LA 1 binds to cultured human intestinal cell lines and inhibits cell attachment and cell invasion by enterovirulent bacteria. Gut 35(4): 483–9

    Article  PubMed  CAS  Google Scholar 

  66. Paton AW, Jennings MP, Morona R, et al. (2005) Recombinant probiotics for treatment and prevention of enterotoxigenic Escherichia coli diarrhea. Gastroenterology 128(5): 1219–28

    Article  PubMed  CAS  Google Scholar 

  67. Hickson M, d’Souza AL, Muthu N, et al. (2007) Use of probiotic Lactobacillus preparation to prevent diarrhoea associated with antibiotics: randomised double blind placebo controlled trial. BMJ 335(7610): 80

    Article  PubMed  Google Scholar 

  68. Yan F, Polk DB (2010) Probiotics: progress toward novel therapies for intestinal diseases. Curr Opin Gastroenterol 26(2): 95–101

    Article  PubMed  Google Scholar 

  69. Walker WA (2008) Mechanisms of action of probiotics. Clin Infect Dis 46(Suppl 2): S87–91; discussion S144–51

    Article  PubMed  CAS  Google Scholar 

  70. Siempos, Athanassa Z, Falagas ME (2008) Frequency and predictors of ventilator-associated pneumonia recurrence: a meta-analysis. Shock 30(5): 487–95

    Article  PubMed  Google Scholar 

  71. Morrow LE, Kollef MH, Casale TB (2010) Probiotic prophylaxis of ventilator-associated pneumonia: a blinded, randomized, controlled trial. Am J Respir Crit Care Med 182(8): 1058–64

    Article  PubMed  Google Scholar 

  72. Oudhuis GJ, Bergmans DC, Dormans T, et al. (2010) Probiotics versus antibiotic decontamination of the digestive tract: infection and mortality. Intensive Care Med 37(1): 110–7

    Article  PubMed  Google Scholar 

  73. Besselink MG, van Santvoort HC, Buskens E, et al. (2008) Probiotic prophylaxis in predicted severe acute pancreatitis: a randomised, double-blind, placebo-controlled trial. Lancet 371(9613): 651–9

    Article  PubMed  Google Scholar 

  74. Tuomola E, Crittenden R, Playne M, et al. (2001) Quality assurance criteria for probiotic bacteria. Am J Clin Nutr 73(2 Suppl): 393S–8S

    PubMed  CAS  Google Scholar 

  75. Clements ML, Levine MM, Ristaino PA, et al. (1983) Exogenous lactobacilli fed to man — their fate and ability to prevent diarrheal disease. Prog Food Nutr Sci 7(3-4): 29–37

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Guery .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Paris

About this chapter

Cite this chapter

Kipnis, E., Dessein, R., Faure, K., Guery, B. (2013). Les thérapeutiques infectieuses non antibiotiques. In: Infectiologie en réanimation. Références en réanimation. Collection de la SRLF. Springer, Paris. https://doi.org/10.1007/978-2-8178-0389-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-2-8178-0389-0_8

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-8178-0388-3

  • Online ISBN: 978-2-8178-0389-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics