Skip to main content

Résumé

La trisomie 21 reste la cause identifiée la plus fréquente de déficience intellectuelle. Le mécanisme de l’atteinte cognitive est très certainement polygénique, la surexpression de quelques gènes localisés sur le chromosome 21 perturbant quelques voies biologiques importantes dans le développement et le fonctionnement cérébral. Actuellement, aucun traitement pharmacologique n’a montré d’amélioration des capacités cognitives chez ces personnes (vitamines, oligo-éléments, hormones). En revanche, un accompagnement éducatif et rééducatif commencé dès le plus jeune age permet un meilleur accomplissement et associé à un suivi médical spécifique doit permettre le plus souvent une intégration sociale et professionnelle en milieu ordinaire. Nos connaissances sur les gènes du chromosome 21 et la neurobiologie, aidées par l’étude de plusieurs modèles de souris trisomiques 21 partielles, ouvrent de nouvelles pistes thérapeutiques basées maintenant sur des rationnels. Deux pistes surtout : d’une part, l’inhibition de l’activité de DYRK1A par l’EGCG et, d’autre part, la régulation de l’excès d’inhibition en particulier hippocampique, par des agonistes inverses du récepteur alpha 5 du GABA-A. Des essais cliniques sont maintenant en cours.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. de Vigan C, Khoshnood B, Cadio E, et al. (2008) Diagnostic prénatal et prévalence de la trisomie 21 en population parisienne, 2001–2005. Gynecol Obstet Fertil 36: 146–150

    Article  PubMed  Google Scholar 

  2. Vicari S (2006) Motor development and neuropsychological patterns in persons with Down syndrome. Behav Genet 36: 355–364

    Article  PubMed  Google Scholar 

  3. Ronan A, Fagan K, Christie L, et al. (2007) Familial 4.3 Mb duplication of 21q22 sheds new light on the Down syndrome critical region. J Med Genet 44: 448–451

    Article  PubMed  CAS  Google Scholar 

  4. Liu C, Belichenko PV, Zhang L, et al. (2011) Mouse models for Down syndrome-associated developmental cognitive disabilities. Dev Neurosci 33: 404–413

    Article  PubMed  CAS  Google Scholar 

  5. Grossman TR, Gamliel A, Wessells RJ, et al. (2011) Over-expression of DSCAM and COL6A2 cooperatively generates congenital heart defects. PLoS Genet 7: e1002344

    Google Scholar 

  6. Salman M (2002) Systematic review of the effect of therapeutic dietary supplements and drugs on cognitive function in subjects with Down syndrome. Eur J Paediatr Neurol 6: 213–219

    Article  PubMed  Google Scholar 

  7. Ellis JM, Tan HK, Gilbert RE, et al. (2008) Supplementation with antioxidants and folinic acid for children with Down’s syndrome: randomised controlled trial. BMJ 336: 594–597

    Article  PubMed  CAS  Google Scholar 

  8. Blehaut H, Mircher C, Ravel A, et al. (2010) Effect of leucovorin (folinic acid) on the developmental quotient of children with Down’s syndrome (trisomy 21) and influence of thyroid status. PLoS One 5: e8394

    Article  PubMed  Google Scholar 

  9. Kishnani PS, Heller JH, Spiridigliozzi GA, et al. (2010) Donepezil for treatment of cognitive dysfunction in children with Down syndrome aged 10–17. Am J Med Genet A 152A: 3028–3035

    Article  PubMed  Google Scholar 

  10. Lobaugh NJ, Karaskov V, Rombough V, et al. (2001) Piracetam therapy does not enhance cognitive functioning in children with down syndrome. Arch Pediatr Adolesc Med 155: 442–448

    PubMed  CAS  Google Scholar 

  11. Connolly BH, Morgan S, Russell FF (1984) Evaluation of children with Down syndrome who participated in an early intervention program. Second follow-up study. Phys Ther 64: 1515–1519

    PubMed  CAS  Google Scholar 

  12. Hines S, Bennett F (1996) Effectiveness of early intervention for children with Down syndrome. Ment Retard Dev Disab Res Rev 2: 96–101

    Article  Google Scholar 

  13. de Freminville B, Bessuges J, Céleste B, et al. (2007) L’accompagnement des enfants porteurs de trisomie 21. Med Ther/Ped 10: 272–280

    Google Scholar 

  14. de Graaf G, van Hove G, Haveman M (2011) More academics in regular schools? The effect of regular versus special school placement on academic skills in Dutch primary school students with Down syndrome. J Intellect Disabil Res. Epub ahead of print

    Google Scholar 

  15. Sablier J, Stip E, Franck N (2009) Remédiation cognitive et assistants cognitifs numériques dans la schizophrénie. Encéphale 35: 160–167

    Article  PubMed  CAS  Google Scholar 

  16. Gilmore L, Cuskelly M (2009) A longitudinal study of motivation and competence in children with Down syndrome: early childhood to early adolescence. J Intellect Disabil Res 53: 484–492

    Article  PubMed  CAS  Google Scholar 

  17. Faulks D, Mazille MN, Collado V, et al. (2008) Masticatory dysfunction in persons with Down’s syndrome. Part 2: management. J Oral Rehabil 35: 863–869

    Article  PubMed  CAS  Google Scholar 

  18. Delabar JM (2010) Syndrome de Down: Nouvelles perspectives thérapeutiques ? Med Sci (Paris) 26: 371–376

    Article  Google Scholar 

  19. Delabar JM, Aflalo-Rattenbac R, Creau N (2006) Developmental defects in trisomy 21 and mouse models. Scientific World Journal 6: 1945–1964

    Article  PubMed  CAS  Google Scholar 

  20. Larsen KB, Laursen H, Graem N, et al. (2008) Reduced cell number in the neocortical part of the human fetal brain in Down syndrome. Ann Anat 190: 421–427

    Article  PubMed  Google Scholar 

  21. Winter TC, Ostrovsky AA, Komarniski CA, et al. (2000) Cerebellar and frontal lobe hypoplasia in fetuses with trisomy 21: usefulness as combined US markers. Radiology 214: 533–538

    PubMed  CAS  Google Scholar 

  22. Schimmel MS, Hammerman C, Bromiker R, et al. (2006) Third ventricle enlargement among newborn infants with trisomy 21. Pediatrics 117: e928–e931

    Article  PubMed  Google Scholar 

  23. Haydar TF, Reeves RH (2012) Trisomy 21 and early brain development. Trends Neurosci 35: 81–91

    Article  PubMed  CAS  Google Scholar 

  24. Golden JA, Hyman BT (1994) Development of the superior temporal neocortex is anomalous in trisomy 21. J Neuropathol Exp Neurol 53: 513–520

    Article  PubMed  CAS  Google Scholar 

  25. Vuksic M, Petanjek Z, Rasin MR, et al. (2002) Perinatal growth of prefrontal layer III pyramids in Down syndrome. Pediatr Neurol 27: 36–38

    Article  PubMed  Google Scholar 

  26. Benavides-Piccione R, Ballesteros-Yanez I, de Lagran MM, et al. (2004) On dendrites in Down syndrome and DS murine models: a spiny way to learn. Prog Neurobiol 74: 111–126

    Article  PubMed  CAS  Google Scholar 

  27. Whittle N, Sartori SB, Dierssen M, et al. (2007) Fetal Down syndrome brains exhibit aberrant levels of neurotransmitters critical for normal brain development. Pediatrics 120: e1465–e1471

    Article  PubMed  Google Scholar 

  28. Ehninger D, Li W, Fox K, et al. (2008) Reversing neurodevelopmental disorders in adults. Neuron 60: 950–960

    Article  PubMed  CAS  Google Scholar 

  29. Salehi A, Faizi M, Colas D, et al. (2009) Restoration of norepinephrine-modulated contextual memory in a mouse model of Down syndrome. Sci Transl Med 1: 7–17

    Article  Google Scholar 

  30. Costa AC (2011) On the promise of pharmacotherapies targeted at cognitive and neurodegenerative components of Down syndrome. Dev Neurosci 33: 414–427

    Article  PubMed  CAS  Google Scholar 

  31. Hanney M, Prasher V, Williams N, et al. (2012) Memantine for dementia in adults older than 40 years with Down’s syndrome (MEADOWS): a randomised, double-blind, placebo-controlled trial. Lancet 379: 528–536

    Article  PubMed  Google Scholar 

  32. Baroncelli L, Braschi C, Spolidoro M, et al. (2011) Brain plasticity and disease: a matter of inhibition. Neural Plast 2011: 286073

    Article  PubMed  Google Scholar 

  33. Chakrabarti L, Best TK, Cramer NP, et al. (2010) Olig1 and Olig2 triplication causes developmental brain defects in Down syndrome. Nat Neurosci 13: 927–934

    Article  PubMed  CAS  Google Scholar 

  34. Fernandez F, Morishita W, Zuniga E, et al. (2007) Pharmacotherapy for cognitive impairment in a mouse model of Down syndrome. Nat Neurosci 10: 411–413

    PubMed  CAS  Google Scholar 

  35. Sale A, Berardi N, Maffei L (2009) Enrich the environment to empower the brain. Trends Neurosci 32: 233–239

    Article  PubMed  CAS  Google Scholar 

  36. Braudeau J, Delatour B, Duchon A, et al. (2011) Specific targeting of the GABA-A receptor alpha5 subtype by a selective inverse agonist restores cognitive deficits in Down syndrome mice. J Psychopharmacol 25: 1030–1042

    Article  PubMed  CAS  Google Scholar 

  37. Arron JR, Winslow MM, Polleri A, et al. (2006) NFAT dysregulation by increased dosage of DSCR1 and DYRK1A on chromosome 21. Nature 441: 595–600

    Article  PubMed  CAS  Google Scholar 

  38. Guedj F, Sebrie C, Rivals I, et al. (2009) Green tea polyphenols rescue of brain defects induced by overexpression of DYRK1A. PLoS One 4: e4606

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag France

About this chapter

Cite this chapter

Touraine, R., de Fréminville, B. (2013). Quels traitements pour la trisomie 21 ?. In: 42es Journées nationales de la Société Française de Médecine Périnatale (Montpellier 17–19 octobre 2012). Springer, Paris. https://doi.org/10.1007/978-2-8178-0385-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-2-8178-0385-2_9

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-8178-0384-5

  • Online ISBN: 978-2-8178-0385-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics