Skip to main content

Rôle émergent des acteurs du cycle cellulaire dans le métabolisme de l’adipocyte

  • Chapter
Physiologie et physiopathologie du tissu adipeux
  • 885 Accesses

Résumé

La cellule adapte sa croissance et son métabolisme en fonction de ses besoins et des signaux extracellulaires qui lui sont envoyés. Des stimuli, comme le stress ou la nutrition, sont des signaux prolifératifs mais aussi métaboliques, suggérant un dialogue très étroit entre ces deux processus biologiques. En effet, une réponse métabolique nécessitera l’activation de facteurs de transcription et de molécules de signalisation qui auront pour effet d’inhiber la progression du cycle cellulaire et donc la prolifération.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. Malumbres M, Barbacid M (2005) Mammalian cyclin-dependent kinases. Trends Biochem Sci 30: 630–41

    Article  PubMed  CAS  Google Scholar 

  2. Brehm A, Miska EA, Mccance DJ et al. (1998) Retinoblastoma protein recruits histone deacetylase to repress transcription. Nature 391: 597–601

    Article  PubMed  CAS  Google Scholar 

  3. Magnaghi-Jaulin L, Groisman R, Naguibneva I et al. (1998) Retinoblastoma protein represses transcription by recruiting a histone deacetylase. Nature 391: 601–5

    Article  PubMed  CAS  Google Scholar 

  4. Fabbrizio E, El Messaoudi S, Polanowska J et al. (2002) Negative regulation of transcription by the type II arginine methyltransferase PRMT5. EMBO Rep 3: 641–5

    Article  PubMed  CAS  Google Scholar 

  5. Fajas L (2003) Adipogenesis: a cross-talk between cell proliferation and cell differentiation. Annals of Medicine 35: 79–85

    Article  PubMed  Google Scholar 

  6. Richon VM, Lyle RE, McGehee RE Jr (1997) Regulation and expression of retinoblastoma proteins p107 and p130 during 3T3-L1 adipocyte differentiation. J Biol Chem 272: 10117–24

    Article  PubMed  CAS  Google Scholar 

  7. Fajas L, Landsberg RL, Huss-Garcia Y et al. (2002) E2Fs regulate adipocyte differentiation. Dev Cell 3: 39–49

    Article  PubMed  CAS  Google Scholar 

  8. Landsberg RL, Sero JE, Danielian PS et al. (2003) The role of E2F4 in adipogenesis is independent of its cell cycle regulatory activity. Proc Natl Acad Sci États-Unis 100: 2456–61

    Article  CAS  Google Scholar 

  9. Chen P, Riley DJ, Chen Y et al. (1996) Retinoblastoma protein positively regulates terminal adipocyte differentiation through direct interaction with C/EBPs. Genes & Development 10: 2794–804

    Article  CAS  Google Scholar 

  10. Fajas L, Egler V, Reiter R et al. (2002) The retinoblastoma-histone deacetylase 3 complex inhibits the peroxisome proliferator-activated receptor gamma and adipocyte differentiation. Developmental Cell 3: 903–10

    Article  PubMed  CAS  Google Scholar 

  11. Abella A, Dubus P, Malumbres M et al. (2005) Cdk4 promotes adipogenesis through PPARgamma activation. Cell Metab 2: 239–49

    Article  PubMed  CAS  Google Scholar 

  12. Iankova I, Petersen Rk, Annicotte JS et al. (2006) PPAR{gamma} Recruits the P-TEFb Complex to Activate Transcription and Promote Adipogenesis. Mol Endocrinol 20: 1494–505.

    Article  PubMed  CAS  Google Scholar 

  13. Helenius K, Yang Y, Alasaari J et al. (2009) Mat1 inhibits peroxisome proliferatoractivated receptor gamma-mediated adipocyte differentiation. Mol Cell Biol 29: 315–23

    Article  PubMed  CAS  Google Scholar 

  14. Fu M, Rao M, Bouras T et al. (2005) Cyclin D1 inhibits peroxisome proliferator-activated receptor gamma-mediated adipogenesis through histone deacetylase recruitment. J Biol Chem 280: 16934–41

    Article  PubMed  CAS  Google Scholar 

  15. Sarruf DA, Iankova I, Abella A et al. (2005) Cyclin D3 promotes adipogenesis through activation of peroxisome proliferator-activated receptor gamma. Mol Cell Biol 25: 9985–95

    Article  PubMed  CAS  Google Scholar 

  16. Aguilar V, Annicotte JS, Escote X et al. (2010) Cyclin G2 Regulates Adipogenesis through PPAR{gamma} Coactivation. Endocrinology 151: 5247–54

    Article  PubMed  CAS  Google Scholar 

  17. Inoue N, Yahagi N, Yamamoto T et al. (2008) Cyclin-dependent kinase inhibitor, p21WAF1/CIP1, is involved in adipocyte differentiation and hypertrophy, linking to obesity, and insulin resistance. J Biol Chem 283: 21220–9

    Article  PubMed  CAS  Google Scholar 

  18. Lalioti V, Muruais G, Dinarina A et al. (2009) The atypical kinase Cdk5 is activated by insulin, regulates the association between GLUT4 and E-Syt1, and modulates glucose transport in 3T3-L1 adipocytes. Proc Natl Acad Sci États-Unis 106: 4249–53

    Article  CAS  Google Scholar 

  19. Muruais G, Lalioti V, Sandoval IV (2009) The Cdk5 inhibitor roscovitine strongly inhibits glucose uptake in 3T3-L1 adipocytes without altering GLUT4 translocation from internal pools to the cell surface. J Cell Physiol 220: 238–44

    Article  PubMed  CAS  Google Scholar 

  20. Kurat CF, Wolinski H, Petschnigg J et al. (2009) Cdk1/Cdc28-dependent activation of the major triacylglycerol lipase Tgl4 in yeast links lipolysis to cell-cycle progression. Mol Cell 33: 53–63

    Article  PubMed  CAS  Google Scholar 

  21. Rane SG, Dubus P, Mettus RV et al. (1999) Loss of Cdk4 expression causes insulin-deficient diabetes and Cdk4 activation results in beta-islet cell hyperplasia. Nat Genet 22: 44–52

    Article  PubMed  CAS  Google Scholar 

  22. Nohara A, Okada S, Ohshima K et al. (2011) Cyclin-dependent kinase-5 is a key molecule in tumor necrosis factor-alpha-induced insulin resistance. J Biol Chem 286: 33457–65

    Article  PubMed  CAS  Google Scholar 

  23. Choi JH, Banks AS, Estall JL et al. (2010) Anti-diabetic drugs inhibit obesity-linked phosphorylation of PPARgamma by Cdk5. Nature 466: 451–6

    Article  PubMed  CAS  Google Scholar 

  24. Choi JH, Banks AS, Kamenecka TM et al. (2011) Antidiabetic actions of a non-agonist PPARgamma ligand blocking Cdk5-mediated phosphorylation. Nature 477: 477–81

    Article  PubMed  CAS  Google Scholar 

  25. Dali-Youcef N, Mataki C, Coste A et al. (2007) Adipose tissue-specific inactivation of the retinoblastoma protein protects against diabesity because of increased energy expenditure. Proc Natl Acad Sci États-Unis 104: 10703–8

    Article  CAS  Google Scholar 

  26. Hansen JB, Jorgensen C, Petersen RK et al. (2004) Retinoblastoma protein functions as a molecular switch determining white versus brown adipocyte differentiation. Proc Natl Acad Sci États-Unis 101: 4112–7

    Article  CAS  Google Scholar 

  27. Scime A, Grenier G, Huh MS et al. (2005) Rb and p107 regulate preadipocyte differentiation into white versus brown fat through repression of PGC-1alpha. Cell Metab 2: 283–95

    Article  PubMed  CAS  Google Scholar 

  28. Naaz A, Holsberger DR, Iwamoto GA et al. (2004) Loss of cyclin-dependent kinase inhibitors produces adipocyte hyperplasia and obesity. Faseb J 18: 1925–7

    PubMed  CAS  Google Scholar 

  29. Lin J, Della-Fera MA, Li C et al. (2003) P27 knockout mice: reduced myostatin in muscle and altered adipogenesis. Biochem Biophys Res Commun 300: 938–42

    Article  PubMed  CAS  Google Scholar 

  30. Chen HZ, Tsai SyLeone G (2009) Emerging roles of E2Fs in cancer: an exit from cell cycle control. Nat Rev Cancer 9: 785–97

    Article  PubMed  CAS  Google Scholar 

  31. Helias-Rodzewicz Z, Pedeutour F, Coindre JM et al. (2009) Selective elimination of amplified CDK4 sequences correlates with spontaneous adipocytic differentiation in liposarcoma. Genes Chromosomes Cancer 48: 943–52

    Article  PubMed  CAS  Google Scholar 

  32. Chung L, Lau SK, Jiang Z et al. (2009) Overlapping features between dedifferentiated liposarcoma and undifferentiated high-grade pleomorphic sarcoma. Am J Surg Pathol 33: 1594–1600

    Article  PubMed  Google Scholar 

  33. Annicotte JS, Blanchet E, Chavey C et al. (2009) The CDK4-pRB-E2F1 pathway controls insulin secretion. Nat Cell Biol 11: 1017–23

    Article  PubMed  CAS  Google Scholar 

  34. Blanchet E, Annicotte JS, Lagarrigue S et al. (2011) E2F transcription factor-1 regulates oxidative metabolism. Nat Cell Biol 13: 1146–52

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Fajas .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Paris

About this chapter

Cite this chapter

Chavey, C., Lagarrigue, S., Annicotte, JS., Fajas, L. (2013). Rôle émergent des acteurs du cycle cellulaire dans le métabolisme de l’adipocyte. In: Physiologie et physiopathologie du tissu adipeux. Springer, Paris. https://doi.org/10.1007/978-2-8178-0332-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-2-8178-0332-6_2

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-8178-0331-9

  • Online ISBN: 978-2-8178-0332-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics