Skip to main content

Interaction des rayonnements ionisants dans les tissus : évaluations du kerma et de la dose absorbée

  • Chapter
Physique appliquée à l’exposition externe

Part of the book series: Ingénierie et Développement Durable ((IEDD))

  • 650 Accesses

Résumé

Nous avons établi dans le chapitre 1 que l’énergie transférée ou communiquée aux particules secondaires chargées aux tissus, revêt un caractère fondamental quant à la détermination des grandeurs dosimétriques. Dans ce chapitre, une analyse des processus physiques conduisant à ces échanges d’énergie doit permettre, autant que possible, de caractériser de fa çon analytique les grandeurs de référence définies précédemment : Φ, K, D.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. Alevra AV (1999) Neutron spectrometry. Radioprotection Vol. 34, no3, 304–333.

    Article  Google Scholar 

  2. Attix FH (1986) Introduction to Radiological Physics and Radiation Dosimetry. Wiley (New York).

    Google Scholar 

  3. Barthe J, Chauvenet B, Bordy JM (2006) La métrologie de la dose au CEA: le Laboratoire National Henri Becquerel. Radioprotection Vol. 41, no 5, 9–24.

    Article  Google Scholar 

  4. Beth H (1930) Ann Phys (Leipzig), 5, 325.

    ADS  Google Scholar 

  5. Bloch F (1933) Ann Phys (Leipzig), 16, 285; Z Phys, 81, 363.

    ADS  Google Scholar 

  6. Bourgois L (2011) Estimation de la dose extrémité due à une contamination par un radionucléide émetteur β: l’équivalent de dose est-il un bon estimateur de la grandeur de protection ? Radioprotection Vol. 46, no 2, 175–187.

    Article  Google Scholar 

  7. Bramblett RL, Ewing RI, Bonner TW (1960) A new type of neutron spectrometer. Nucl Instrum Meth 9, 1–12.

    Article  ADS  Google Scholar 

  8. Briesmeister JF (1997) MCNP — A general Monte-Carlo N-Particle Transport Code version 4B LA-12625-M.

    Google Scholar 

  9. Brooks FD, Klein H (2002) Neutron spectrometry — historical review and present status. Nucl Instrum Meth A 476, 1–11.

    Article  ADS  Google Scholar 

  10. Burlin TE (1966) A general theory of cavity ionisation. Brit Rad 39(466): 727–34.

    Article  Google Scholar 

  11. Caswell RS, Coyne JJ, Randolph ML (1980) Kerma Factors for Neutron Energies below 30 MeV. Rad Res Vol. 83, No. 2, 217–254.

    Article  Google Scholar 

  12. Collot J (2001) Cours de physique expérimentale des hautes énergies du DEA de physique théorique Rhône-Alpes.

    Google Scholar 

  13. Cross WG (1997) Empirical expression for beta ray point source dose distributions. Radiat Prot Dosim Vol. 69, no2, 85–96.

    Article  Google Scholar 

  14. Crovisier P, Asselineau B, Pelcot G, Van-Ryckeghem L, Cadiou A, Truffert H, Groetz JE, Benmosbah M (2005) French comparison exercice with the rotating neutron spectrometer, “ROSPEC”. Radiat Prot Dosim Vol. 115, No. 1–4, 324–328.

    Article  Google Scholar 

  15. Daures J, Ostrowsky A (2005) New constant-temperature operating mode for graphite calorimeter at LNE-LNHB. Phys Med Biol 50, 4035–4052.

    Article  Google Scholar 

  16. De Pangher J, Nichols LL (1966) A precision long counter for measuring fast neutron flux density, BNML-260.

    Google Scholar 

  17. Drouin D, Réal Couture A, Joly D, Tastet X, Aimez V, Gauvin R (2007) CASINO V2.42 — A Fast and Easy-to-use Modeling Tool for Scanning Electron Microscopy and Microanalysis Users. Scanning Vol. 29,3, 92–101.

    Article  Google Scholar 

  18. Fano U (1956) Note on the Bragg-Gray cavity principle for measuring energy dissipation. Radiat Res 1, 237–40.

    Article  Google Scholar 

  19. Faussot A, Antoni R (2008) Cours de dosimétrie fondamentale du Brevet de technicien supérieur en radioprotection.

    Google Scholar 

  20. Gambini DJ, Granier R (1997) Manuel pratique de radioprotection. 2e éd, Tec & Doc.

    Google Scholar 

  21. Gayther (1990) International Intercomparison of Fast Neutron Fluence-Rate Measurements Using Fission Chamber Transfer Instruments. Metrologia 27, 221–231.

    Google Scholar 

  22. Golovachik VT, Kustarjov VN, Savitskaya EN, Sannikov AV (1989) Absorbed dose and dose equivalent depth distributions for protons with energies from 2 to 600 MeV. Radiat Prot Dosim Vol. 28, no3, 189–199.

    Google Scholar 

  23. Grosswendt B (1994) Determination of electron depth-dose curves for water, ICRU tissue, and PMMA and their application to radiation protection dosimetry. Radiat Prot Dosim Vol. 54, no2, 85–97.

    Google Scholar 

  24. Gunzert-Marx K, Iwase H, Schardt D, Simon RS (2008) Secondary beam fragments produced by 200MeV.u−1 12C ions in water and their dose contributions in carbon ion radiotherapy. New Journal of Physics 10, 075003 (21 p).

    Google Scholar 

  25. Hanson AO, McKibben JL (1947) A Neutron Detector Having Uniform Sensitivity from 10 KeV to 3 MeV. Phys Rev Vol. 72, no 8, 673–677.

    Article  ADS  Google Scholar 

  26. Heimbach C (2006) NIST Calibration of a neutron spectrometer ROSPEC. J Res Natl Inst Stand Technol 111, 419–428.

    Article  Google Scholar 

  27. Holt PD (1985) Passive detectors for neutron fluence measurement. Radiat Prot Dosim Vol. 10, no1–4, 251–264.

    Google Scholar 

  28. Hubbell JH, Seltzer SM (1996) Tables of X-Ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients from 1 keV to 20 MeV for Elements Z = 1 to 92 and 48 Additional Substances of Dosimetric Interest Ionizing Radiation Division, Physics Laboratory, NIST. Disponible sur le site http://physics.nist.gov/PhysRefData/XrayMassCoef/tab3.html et http://physics.nist.gov/PhysRefData/XrayMassCoef/tab4.html.

    Google Scholar 

  29. ICRU (1980) Radiation Quantities and Units. Publication 33.

    Google Scholar 

  30. ICRU (1984) Stopping Powers for electrons and positrons. Publication 37.

    Google Scholar 

  31. ICRU (1998) Conversion Coefficients for use in Radiological Protection against External Radiation. Publication 57.

    Google Scholar 

  32. ICRU (2000) Nuclear Data for Neutron and Proton Radiotherapy and for Radiation Protection. Publication 63

    Google Scholar 

  33. ICRU (2001) Determination of Operational Dose Equivalent Quantities for Neutrons. Publication 66.

    Google Scholar 

  34. ICRU (2011) Fundamental quantities and units for ionizing radiation (revised). Publication 85a.

    Google Scholar 

  35. Ing H, Clifford T, McLean T, Webb W, Cousin T, Dhermain J (1997) A simple reliable high resolution neutron spectrometer. Radiat Prot Dosim Vol. 70, no1–4, 273–278.

    Article  Google Scholar 

  36. ICRU (1993) Stopping powers and ranges for protons and alpha particles. Publication 49.

    Google Scholar 

  37. Katz L, Penfold AS (1952) Range energy relations for electrons and the determination on beta-ray end point energies by absorption. Rev Mod Phys Vol. 24, no1, 28–44.

    Article  ADS  Google Scholar 

  38. Klein O, Nishina Y (1929) Die Streuung von Strahlung durch freie Elektronen nach der neuen relativistischen Quantendynamik von Dirac. Z F Phys 52(11–12): 853–869.

    Article  ADS  MATH  Google Scholar 

  39. Knoll GF (1989) Radiation detection and measurement, 2nd ed. Wiley, New York, 1989.

    Google Scholar 

  40. Lacoste V (2010) Design of a new long counter for the determination of the neutron fluence reference values at the IRSN AMANDE facility. Radiat Meas 45, 1250–1253.

    Article  Google Scholar 

  41. Lacoste V, Gressier V (2010) Experimental characterisation of the IRSN long counter for the determination of the neutron fluence reference values at the AMANDE facility. Radiat Meas 45, 1254–1257.

    Article  Google Scholar 

  42. Lefort M (1966) La chimie nucléaire: étude des noyaux radioactifs et des réactions nucléaires. Dunod.

    Google Scholar 

  43. Loevinger R, Japha EM, Brownwell G (1956) L. Discrete radioisotope sources. In Radiation Dosimetry. Ed GJ Hine and GL Brownell (Academic Press), 693–799.

    Google Scholar 

  44. Northcliffe LC (1960) Energy Loss and Effective Charge of Heavy Ions in Aluminum. Phys Rev 120, 1744–1757.

    Article  ADS  Google Scholar 

  45. Paganetti H (2002) Nuclear interactions in proton therapy: dose and relative biological effect distributions originating from primary and secondary particles. Phys Med Biol 47, 747–764.

    Article  Google Scholar 

  46. Pagès L, Bertel E, Joffre H, Sklavenitis L (1972) Energy loss range, and bremsstrahlung yield for 10 keV to 100 MeV electrons. Atom Data Nucl Data Vol. 4, No1.

    Google Scholar 

  47. Pannetier R (1980) Vade-mecum du technicien nucléaire S.C.F. du Bastet.

    Google Scholar 

  48. Pelliccioni M (1998) Fluence to dose equivalent conversion data and radiation weighting factors for high energy radiation. Radiat Prot Dosim Vol. 77, No. 3, 159–170.

    Article  Google Scholar 

  49. Pelowitz DB (2005) MCNPX User’s manual version 2.5.0. LA-CP-05-0369.

    Google Scholar 

  50. Pichenot G, Guldbakke S, Asselineau B, Gressier V, Itié C, Klein H, Knauf K, Lebreton L, Löb S, Pochon-Guérin L, Schlegel D, Sosaat W (2002) Characterisation of spherical recoil proton proportional counters used for neutron spectrometry. Nucl Inst Meth A 476, 165–169.

    Article  ADS  Google Scholar 

  51. Profio AE (1979) Radiation shielding and dosimetry. John Wiley and Sons, Inc., New York, NY.

    Google Scholar 

  52. Roberts NJ, Douglas DJ, Lacoste V, Böttger R, Loeb S (2010) Comparison of long counter measurements of monoenergetic and radionuclide source-based neutron fluence. Radiat Meas 45, 1151–1153.

    Article  Google Scholar 

  53. Rohrlish, Carlson (1953) Positron-electron differences in energy loss and multiple scattering. Phys Rev 93, (1954), 38–44.

    Article  ADS  Google Scholar 

  54. Shultis JK, Faw RE (2000) Radiation Shielding. American Nuclear Society, Inc.

    Google Scholar 

  55. Sternheimer RM (1966) Density Effect for the Ionization Loss of Charged Particles. Phys Rev Vol. 145,1, 247–250.

    Article  ADS  Google Scholar 

  56. Tsvetkov I, Fominykh V (1978) Calorimeter for absolute measurement of absorbed electron dose. Meas Tech Vol. 23, 6.

    Google Scholar 

  57. Vega-Carrillo HR, Manzanares-Acuña E, Hernández-Dávila, Mercado Sánchez GA (2005) Response matrix of a multisphere spectrometer with an 3He proportional counter. Rev Mex Fis 51(1), 45–52.

    Google Scholar 

  58. Williamson C, Boujot JP, Picard J (1966) Tables of range and stopping power of chemical elements for charges particles of energy 0,5 to 500 MeV. Rapport CEA R 3042.

    Google Scholar 

  59. Veinot KG, Hertel NE (2005) Effective quality factor for neutrons based on the revised ICRP/ICRU recommendations. Rad Prot Dosim Vol 115 no 1–4: 536–541.

    Article  Google Scholar 

  60. ICRP (1995) Conversion coefficients for Use in Radiological Against External Radiation. Publication 74.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag France, Paris

About this chapter

Cite this chapter

Antoni, R., Bourgois, L. (2013). Interaction des rayonnements ionisants dans les tissus : évaluations du kerma et de la dose absorbée. In: Physique appliquée à l’exposition externe. Ingénierie et Développement Durable. Springer, Paris. https://doi.org/10.1007/978-2-8178-0311-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-2-8178-0311-1_2

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-8178-0310-4

  • Online ISBN: 978-2-8178-0311-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics