Skip to main content

Place des biomarqueurs dans la prise en charge du cancer du sein

Rapport 2009 sur l’état des connaissances relatives aux Biomarqueurs uPA/PAI-1, Oncotype DX™ et MammaPrint®

  • Conference paper
Cancer du sein

Résumé

Ce rapport dresse un état des connaissances relatives aux biomarqueurs tissulaires uPA/PAI-1, Oncotype DX™ et MammaPrint® dans la prise en charge du cancer du sein.

Ce rapport a été élaboré en partenariat avec la Société Française de Sénologie et de Pathologie Mammaire. Ce document a été publié en novembre 2009 avec le soutien fi nancier de la Fédération nationale des centres de lutte contre le cancer www.fnclcc.fr INCa — Boulogne-Billancourt — Novembre 2009. Ce document est téléchargeable sur www.e-cancer.fr. Rapport édité par l’Institut National du Cancer (INCa). Tous droits réservés — Siren: 185 512 777. Conception/Réalisation: INCa. ISSN 1760-7748. Dépôt légal: Novembre 2009.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. Rican S, Jougla E, Kerserho D, Gourdon G, Salem G. La mortalité par cancer en France métropolitaine. Tendances récentes (20002003). Oncologie 2006; 8: 911–926

    Article  Google Scholar 

  2. Goldhirsch A, Wood WC, Gelber RD, Coates AS, Thurlimann B, Senn HJ. Progress and promise: highlights of the international expert consensus on the primary therapy of early breast cancer 2007. Ann Oncol 2007; 18: 1133–1144

    Article  PubMed  CAS  Google Scholar 

  3. Eifel P, Axelson JA, Costa J, et al. National Institutes of Health Consensus Development Conference Statement: adjuvant therapy for breast cancer, November 1–3, 2000. J Natl Cancer Inst 2001; 93: 979–989

    Article  PubMed  CAS  Google Scholar 

  4. STPAULDEVENCE. Recommandations pour la pratique clinique » Cancers du sein « [online]. 2005. Available: URL: http://www.sorcancer.fr/index. php?tg=fileman&idx=get&in l=1&id=2&gr=Y&path=Sein%2Fcancer+du+sei n+infil trant&file=recommandationsSPdV2005.pdf

    Google Scholar 

  5. STPAULDEVENCE. Recommandations pour la Pratique Clinique: Saint Paul de Vence 2007 » cancers du sein « [online]. 2007. Available: URL: http://www.sorcancer. fr/index.php?tg=fileman&idx=get&in l=1&id=2&gr=Y&path=Sein%2Fcancer+du+se i n+infiltrant&file=texteintegralstpaul2007.pdf

    Google Scholar 

  6. EBCTCG. Polychemotherapy for early breast cancer: an overview of the randomised trials. Early Breast Cancer Trialists’ Collaborative Group. Lancet 1998; 352: 930–942

    Article  Google Scholar 

  7. EBCTCG. Tamoxifen for early breast cancer: an overview of the randomised trials. Early Breast Cancer Trialists’ Collaborative Group. Lancet 1998; 351: 1451–1467

    Article  Google Scholar 

  8. COCHRANE. Multi-agent chemotherapy for early breast cancer. [online]. Cochrane Database Syst Rev, ed. 2002

    Google Scholar 

  9. EBCTCG, Early Breast Cancer Trialists’s Collaborative Group. Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15year survival: an overview of the randomised trials. Lancet 2005; 365: 168–717

    Google Scholar 

  10. Sundquist M, Thorstenson S, Brudin L, Wingren S, Nordenskjold B. Incidence and prognosis in early onset breast cancer. Breast 2002; 11: 30–35

    Article  PubMed  CAS  Google Scholar 

  11. Hery M, Delozier T, Ramaioli A, et al. Natural history of node-negative breast cancer: are conventional prognostic factors predictors of time to relapse? Breast 2002; 11: 442–448

    Article  PubMed  Google Scholar 

  12. Hayes DF. Do we need prognostic factors in nodal-negative breast cancer? Arbiter. Eur J Cancer 2000; 36: 302–306

    Article  CAS  Google Scholar 

  13. Cianfrocca M, Goldstein LJ. Prognostic and predictive factors in early-stage breast cancer. Oncologist 2004; 9: 606–616

    Article  PubMed  Google Scholar 

  14. Subramaniam DS, Isaacs C. Utilizing prognostic and predictive factors in breast cancer. Curr Treat Options Oncol 2005; 6: 147–159

    Article  PubMed  Google Scholar 

  15. Hayes DF. Prognostic and predictive factors for breast cancer: translating technology to oncology. J Clin Oncol 2005; 23: 1596–1597

    Article  PubMed  Google Scholar 

  16. Hayes DF, Bast RC, Desch CE, et al. Tumor marker utility grading system: a framework to evaluate clinical utility of tumor markers. J Natl Cancer Inst 1996; 88: 145–666

    Article  Google Scholar 

  17. Harris L, Fritsche H, Mennel R, et al. American Society of Clinical Oncology 2007 update of recommendations for the use of tumor markers in breast cancer. J Clin Oncol 2007; 25: 5287–5312

    Article  PubMed  CAS  Google Scholar 

  18. Hayes DF, Trock B, Harris AL. Assessing the clinical impact of prognostic factors: when is »statistically significant« clinically useful? Breast Cancer Res Treat 1998; 52: 305–319

    Article  PubMed  CAS  Google Scholar 

  19. Sturgeon CM, Duffy MJ, Stenman UH, et al. National Academy of Clinical Biochemistry laboratory medicine practice guidelines for use of tumor markers in testicular, prostate, colorectal, breast, and ovarian cancers. Clin Chem 2008; 54: e11e79

    Google Scholar 

  20. Janicke F, Prechtl A, Thomssen C, et al. Randomized adjuvant chemotherapy trial in high-risk, lymph node-negative breast cancer patients identified by urokinase-type plasminogen activator and plasminogen activator inhibitor type 1. J Natl Cancer Inst 2001; 93: 913–920

    Article  PubMed  CAS  Google Scholar 

  21. Look MP, van Putten WL, Duffy MJ, et al. Pooled analysis of prognostic impact of urokinase-type plasminogen activator and its inhibitor PAI-1 in 8377 breast cancer patients. J Natl Cancer Inst 2002; 94: 116–128

    Article  PubMed  CAS  Google Scholar 

  22. Vetter M, Thomssen C, Geurts-Moespot A, et al. Feasibility of determination of ASCO recommended prognostic factors Upa/PAI-1 in clinical routine and the node-negative NNBC 3-Europe therapy trial. Feasibility of determination of ASCO recommended prognostic factors Upa/PAI-1 in clinical routine and the node-negative NNBC 3Europe therapy trial.; ASCO 2008

    Google Scholar 

  23. Thomssen C, Vetter M, Geurts-Moespot A, et al. Determination of ASCO recommended prognostic factors uPA and PAI-1 in daily clinical routine and the node-negative NNBC 3-Europe trial. San Antonio Breast Cancer Symposium; 12 November 2008. USA, San Antonio: 2008

    Google Scholar 

  24. Schmidt M, Victor A, Bratzel D, et al. Long-term outcome prediction by clinicopathological risk classification algorithms in node-negative breast cancer-comparison between Adjuvant!, St Gallen, and a novel risk algorithm used in the prospective randomized Node-Negative-Breast Cancer-3 (NNBC-3) trial. Ann Oncol 2009; 20: 258–264

    Article  PubMed  CAS  Google Scholar 

  25. Anneck K, Schmitt M, Euler U, et al. uPA and PAI-1 in breast cancer: review of their clinical utility and current validation in the prospective NNBC-3 trial. Adv Clin Chem 2008; 45: 31–45

    Article  CAS  Google Scholar 

  26. Dano K, Andreasen PA, Grondahl-Hansen J, Kristensen P, Nielsen LS, Skriver L. Plasminogen activators, tissue degradation, and cancer. Adv Cancer Res 1985; 44: 139–266

    Article  PubMed  CAS  Google Scholar 

  27. Dvorak HF. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 1986; 315: 1650–1659

    Article  PubMed  CAS  Google Scholar 

  28. Hekman CM, Loskutoff DJ. Fibrinolytic pathways and the endothelium. Semin Thromb Hemost 1987; 13: 514–527

    Article  PubMed  CAS  Google Scholar 

  29. Martin PM, Ouafik L. John Libbey Eurotext, ed. Les cibles du stroma et du système angiogénique. 2008

    Google Scholar 

  30. Andreasen PA, Kjoller L, Christensen L, Duffy MJ. The urokinase-type plasminogen activator system in cancer metastasis: a review. Int J Cancer 1997; 72: 1–22

    Article  PubMed  CAS  Google Scholar 

  31. Schmitt M, Harbeck N, Thomssen C, et al. Clinical impact of the plasminogen activation system in tumor invasion and metastasis: prognostic relevance and target for therapy. Thromb Haemost 1997; 78: 285–296

    PubMed  CAS  Google Scholar 

  32. Stephens RW, Brunner N, Janicke F, Schmitt M. The urokinase plasminogen activator system as a target for prognostic studies in breast cancer. Breast Cancer Res Treat 1998; 52: 99–111

    Article  PubMed  CAS  Google Scholar 

  33. Duffy MJ, Duggan C. The urokinase plasminogen activator system: a rich source of tumour markers for the individualised management of patients with cancer. Clin Biochem 2004; 37: 541–548

    Article  PubMed  CAS  Google Scholar 

  34. Jankun J, Merrick HW, Goldblatt PJ Expression and localization of elements of the plasminogen activation system in benign breast disease and breast cancers. J Cell Biochem 1993; 53: 135–144

    Article  PubMed  CAS  Google Scholar 

  35. Christensen L, Wiborg Simonsen AC, Heegaard CW, Moestrup SK, Andersen JA, Andreasen PA. Immunohistochemical localization of urokinase-type plasminogen activator, type-1 plasminogen-activator inhibitor, urokinase receptor and alpha(2) macroglobulin receptor in human breast carcinomas. Int J Cancer 1996; 66: 441–452

    Article  PubMed  CAS  Google Scholar 

  36. Umeda T, Eguchi Y, Okino K, Kodama M, Hattori T. Cellular localization of urokinasetype plasminogen activator, its inhibitors, and their mRNAs in breast cancer tissues. J Pathol 1997; 183: 388–397

    Article  PubMed  CAS  Google Scholar 

  37. Andreasen PA, Georg B, Lund LR, Riccio A, Stacey SN. Plasminogen activator inhibitors: hormonally regulated serpins. Mol Cell Endocrinol 1990; 68: 1–19

    Article  PubMed  CAS  Google Scholar 

  38. Harbeck N, Dettmar P, Thomssen C, et al. Risk-group discrimination in node-negative breast cancer using invasion and proliferation markers: 6-year median follow-up. Br J Cancer 1999; 80: 419–426

    Article  PubMed  CAS  Google Scholar 

  39. Harbeck N, Kates RE, Schmitt M. Clinical relevance of invasion factors urokinase-type plasminogen activator and plasminogen activator inhibitor type 1 for individualized therapy decisions in primary breast cancer is greatest when used in combination. J Clin Oncol 2002; 20: 1000–1007

    Article  PubMed  Google Scholar 

  40. Rosenberg S. The urokinase-type plasminogen activator system in cancer and other pathological conditions: introduction and perspective. Curr Pharm Des 2003; 9: 4p

    Google Scholar 

  41. Croucher DR, Saunders DN, Lobov S, Ranson M. Revisiting the biological roles of PAI2 (SERPINB2) in cancer. Nat Rev Cancer 2008; 8: 535–545

    Article  PubMed  CAS  Google Scholar 

  42. Bajou K, Peng H, Laug WE, et al. Plasminogen activator inhibitor-1 protects endothelial cells from FasL-mediated apoptosis. Cancer Cell 2008; 14: 324–334

    Article  PubMed  CAS  Google Scholar 

  43. Ferno M, Bendahl PO, Borg A, et al. Urokinase plasminogen activator, a strong independent prognostic factor in breast cancer, analysed in steroid receptor cytosols with a luminometric immunoassay. Eur J Cancer 1996; 32A: 793–801

    Article  PubMed  CAS  Google Scholar 

  44. Grondahl-Hansen J, Christensen IJ, Briand P, et al. Plasminogen activator inhibitor type 1 in cytosolic tumor extracts predicts prognosis in low-risk breast cancer patients. Clin Cancer Res 1997; 3: 233–239

    PubMed  CAS  Google Scholar 

  45. Duffy MJ, Duggan C, Mulcahy HE, McDermott EW, O’Higgins NJ. Urokinase plasminogen activator: a prognostic marker in breast cancer including patients with axillary node-negative disease. Clin Chem 1998; 44: 1177–1183

    PubMed  CAS  Google Scholar 

  46. Eppenberger U, Kueng W, Schlaeppi JM, et al. Markers of tumor angiogenesis and proteolysis independently define high-and low-risk subsets of node-negative breast cancer patients. J Clin Oncol 1998; 16: 3129–3136

    PubMed  CAS  Google Scholar 

  47. Peyrat JP, Vanlemmens L, Fournier J, Huet G, Revillion F, Bonneterre J. Prognostic value of p53 and urokinase-type plasminogen activator in node-negative human breast cancers. Clin Cancer Res 1998; 4: 189–196

    PubMed  CAS  Google Scholar 

  48. Bouchet C, Hacene K, Martin PM, et al. Dissemination risk index based on plasminogen activator system components in primary breast cancer. J Clin Oncol 1999; 17: 3048–3057

    PubMed  CAS  Google Scholar 

  49. Broet P, Spyratos F, Romain S, et al. Prognostic value of uPA and p53 accumulation measured by quantitative biochemical assays in 1245 primary breast cancer patients: a multicentre study. Br J Cancer 1999; 80: 536–545

    Article  PubMed  CAS  Google Scholar 

  50. Harbeck N, Thomssen C, Berger U, et al. Invasion marker PAI-1 remains a strong prognostic factor after long-term follow-up both for primary breast cancer and following first relapse. Breast Cancer Res Treat 1999; 54: 147–157

    Article  PubMed  CAS  Google Scholar 

  51. Foekens JA, Peters HA, Look MP, et al. The urokinase system of plasminogen activation and prognosis in 2780 breast cancer patients. Cancer Res 2000; 60: 636–643

    PubMed  CAS  Google Scholar 

  52. Pedersen AN, Christensen IJ, Stephens RW, et al. The complex between urokinase and its type-1 inhibitor in primary breast cancer: relation to survival. Cancer Res 2000; 60: 6927–6934

    PubMed  CAS  Google Scholar 

  53. Malmstrom P, Bendahl PO, Boiesen P, et al. S-phase fraction and urokinase plasminogen activator are better markers for distant recurrences than Nottingham Prognostic Index and histologic grade in a prospective study of premenopausal lymph node-negative breast cancer. J Clin Oncol 2001; 19: 2010–2019

    PubMed  CAS  Google Scholar 

  54. Sweep CG, Geurts-Moespot J, Grebenschikov N, et al. External quality assessment of trans-European multicentre antigen determinations (enzyme-linked immunosorbent assay) of urokinase-type plasminogen activator (uPA) and its type 1 inhibitor (PAI-1) in human breast cancer tissue extracts. Br J Cancer 1998; 78: 1434–1441

    Article  PubMed  CAS  Google Scholar 

  55. Look M, van PW, Duffy M, et al. Pooled analysis of prognostic impact of uPA and PAI-1 in breast cancer patients. Thromb Haemost 2003; 90: 538–548

    PubMed  CAS  Google Scholar 

  56. Harbeck N, Alt U, Berger U, et al. Prognostic impact of proteolytic factors (urokinasetype plasminogen activator, plasminogen activator inhibitor 1, and cathepsins B, D, and L) in primary breast cancer reflects effects of adjuvant systemic therapy. Clin Cancer Res 2001; 7: 2757–2764

    PubMed  CAS  Google Scholar 

  57. Konecny G, Untch M, Arboleda J, et al. Her-2/neu and urokinase-type plasminogen activator and its inhibitor in breast cancer. Clin Cancer Res 2001; 7: 2448–2457

    PubMed  CAS  Google Scholar 

  58. Borstnar S, Vrhovec I, Svetic B, Cufer T. Prognostic value of the urokinase-type plasminogen activator, and its inhibitors and receptor in breast cancer patients. Clin Breast Cancer 2002; 3: 138–146

    Article  PubMed  CAS  Google Scholar 

  59. Borstnar S, Vrhovec I, Cufer T. Prognostic value of plasminogen activator inhibitors in breast cancer. Int J Biol Markers 2002; 17: 96–103

    PubMed  CAS  Google Scholar 

  60. Castello R, Estelles A, Vazquez C, et al. Quantitative real-time reverse transcription-PCR assay for urokinase plasminogen activator, plasminogen activator inhibitor type 1, and tissue metalloproteinase inhibitor type 1 gene expressions in primary breast cancer. Clin Chem 2002; 48: 1288–1295

    PubMed  CAS  Google Scholar 

  61. Harbeck N, Kates RE, Look MP, et al. Enhanced benefit from adjuvant chemotherapy in breast cancer patients classified high-risk according to urokinase-type plasminogen activator (uPA) and plasminogen activator inhibitor type 1 (n = 3424). Cancer Res 2002; 62: 4617–4622

    PubMed  CAS  Google Scholar 

  62. Luqmani YA, Temmim L, Parkar AH, Mathew M. Clinical implications of urokinase and tissue type plasminogen activators and their inhibitor (PAI-1) in breast cancer tissue. Oncol Rep 2002; 9: 645–651

    PubMed  CAS  Google Scholar 

  63. Spyratos F, Bouchet C, Tozlu S, et al. Prognostic value of uPA, PAI-1 and PAI-2 mRNA expression in primary breast cancer. Anticancer Res 2002; 22: 2997–3003

    PubMed  CAS  Google Scholar 

  64. Bouchet C, Ferrero-Pous M, Hacene K, Becette V, Spyratos F. Limited prognostic value of c-erbB-2 compared to uPA and PAI1 in primary breast carcinoma. Int J Biol Markers 2003; 18: 207–217

    PubMed  CAS  Google Scholar 

  65. Cufer T, Borstnar S, Vrhovec I. Prognostic and predictive value of the urokinase-type plasminogen activator (uPA) and its inhibitors PAI-1 and PAI-2 in operable breast cancer. Int J Biol Markers 2003; 18: 106–115

    PubMed  CAS  Google Scholar 

  66. Dazzi C, Cariello A, Maioli P, et al. A high cytosol value of urokinase-type plasminogen activator (uPA) may be predictive of early relapse in primary breast cancer. Cancer Invest 2003; 21: 208–216

    Article  PubMed  CAS  Google Scholar 

  67. Hansen S, Overgaard J, Rose C, et al. Independent prognostic value of angiogenesis and the level of plasminogen activator inhibitor type 1 in breast cancer patients. Br J Cancer 2003; 88: 102–108

    Article  PubMed  CAS  Google Scholar 

  68. Zemzoum I, Kates RE, Ross JS, et al. Invasion factors uPA/PAI-1 and HER2 status provide independent and complementary information on patient outcome in nodenegative breast cancer. J Clin Oncol 2003; 21: 1022–1028

    Article  PubMed  CAS  Google Scholar 

  69. Meo S, Dittadi R, Peloso L, Gion M. The prognostic value of vascular endothelial growth factor, urokinase plasminogen activator and plasminogen activator inhibitor-1 in node-negative breast cancer. Int J Biol Markers 2004; 19: 282–288

    PubMed  CAS  Google Scholar 

  70. Leissner P, Verjat T, Bachelot T, et al. Prognostic significance of urokinase plasminogen activator and plasminogen activator inhibitor-1 mRNA expression in lymph nodeand hormone receptor-positive breast cancer. BMC Cancer 2006; 31: 216

    Article  CAS  Google Scholar 

  71. Biermann JC, Holzscheiter L, Kotzsch M, et al. Quantitative RT-PCR assays for the determination of urokinase-type plasminogen activator and plasminogen activator inhibitor type 1 mRNA in primary tumor tissue of breast cancer patients: comparison to antigen quantification by ELISA. Int J Mol Med 2008; 21: 251–259

    PubMed  CAS  Google Scholar 

  72. Descotes F, Riche S, Saez S, et al. Plasminogen Activator Inhibitor Type 1 is the Most Significant of the Usual Tissue Prognostic Factors in Node-Negative Breast Ductal Adenocarcinoma Independent of Urokinase-Type Plasminogen Activator. Clin Breast Cancer 2008; 8: 168–177

    Article  PubMed  Google Scholar 

  73. Offersen BV, Alsner J, Ege OK, et al. A comparison among HER2, TP53, PAI-1, angiogenesis, and proliferation activity as prognostic variables in tumours from 408 patients diagnosed with early breast cancer. Acta Oncol 2008; 47: 618–632

    Article  PubMed  CAS  Google Scholar 

  74. Benraad TJ, Geurts-Moespot J, Grondahl-Hansen J, et al. Immunoassays (ELISA) of urokinase-type plasminogen activator (uPA): report of an EORTC/BIOMED-1 workshop. Eur J Cancer 1996; 32A: 1371–1381

    Article  PubMed  CAS  Google Scholar 

  75. Prechtl A, Harbeck N, Thomssen C, et al. Tumor-biological factors uPA and PAI-1 as stratification criteria of a multicenter adjuvant chemotherapy trial in nodenegative breast cancer. Int J Biol Markers 2000; 15: 73–78

    PubMed  CAS  Google Scholar 

  76. Harbeck N, Kates RE, Gauger K, et al. Urokinase-type plasminogen activator (uPA) and its inhibitor PAI-I: novel tumor-derived factors with a high prognostic and predictive impact in breast cancer. Thromb Haemost 2004; 91: 450–456

    PubMed  CAS  Google Scholar 

  77. Fisher B, Costantino J, Redmond C, et al. A randomized clinical trial evaluating tamoxifen in the treatment of patients with node-negative breast cancer who have estrogen-receptor-positive tumors. N Engl J Med 1989; 320: 479–484

    Article  PubMed  CAS  Google Scholar 

  78. Fisher B, Dignam J, Wolmark N, et al. Tamoxifen and chemotherapy for lymph node-negative, estrogen receptor-positive breast cancer. J Natl Cancer Inst 1997; 89: 1673–1682

    Article  PubMed  CAS  Google Scholar 

  79. Fisher B, Jeong JH, Bryant J, et al. Treatment of lymph-node-negative, oestrogenreceptor-positive breast cancer: long-term findings from National Surgical Adjuvant Breast and Bowel Project randomised clinical trials. Lancet 2004; 364: 858–868

    Article  PubMed  CAS  Google Scholar 

  80. Cronin M, Pho M, Dutta D, et al. Measurement of gene expression in archival paraffinembedded tissues: development and performance of a 92-gene reverse transcriptasepolymerase chain reaction assay. Am J Pathol 2004; 164: 35–42

    Article  PubMed  CAS  Google Scholar 

  81. Sparano JA. TAILORx: trial assigning individualized options for treatment (Rx). Clin Breast Cancer 2006; 7: 347–350

    Article  PubMed  Google Scholar 

  82. Marchionni L, Wilson RF, Wolff AC, et al. Systematic review: gene expression profiling assays in early-stage breast cancer. Ann Intern Med 2008; 148: 358–369

    PubMed  Google Scholar 

  83. Paik S, Shak S, Tang G, et al. A multigene assay to predict recurrence of tamoxifentreated, node-negative breast cancer. N Engl J Med 2004; 351: 2817–2826

    Article  PubMed  CAS  Google Scholar 

  84. Cobleigh MA, Tabesh B, Bitterman P, et al. Tumor gene expression and prognosis in breast cancer patients with 10 or more positive lymph nodes. Clin Cancer Res 2005; 11: 8623–8631

    Article  PubMed  CAS  Google Scholar 

  85. Esteva FJ, Sahin AA, Cristofanilli M, et al. Prognostic role of a multigene reverse transcriptase-PCR assay in patients with node-negative breast cancer not receiving adjuvant systemic therapy. Clin Cancer Res 2005; 11: 3315–3319

    Article  PubMed  CAS  Google Scholar 

  86. Habel LA, Shak S, Jacobs MK, et al. A population-based study of tumor gene expression and risk of breast cancer death among lymph node-negative patients. Breast Cancer Res 2006; 8: R25

    Article  PubMed  CAS  Google Scholar 

  87. Paik S, Tang G, Shak S, et al. Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor-positive breast cancer. J Clin Oncol 2006; 24: 3726–3734

    Article  PubMed  CAS  Google Scholar 

  88. Cronin M, Sangli C, Liu ML, et al. Analytical validation of the Oncotype DX genomic diagnostic test for recurrence prognosis and therapeutic response prediction in nodenegative, estrogen receptor-positive breast cancer. Clin Chem 2007; 53: 1084–1091

    Article  PubMed  CAS  Google Scholar 

  89. Badve SS, Baehner FL, Gray RP, et al. Estrogen-and progesterone-receptor status in ECOG 2197: comparison of immunohistochemistry by local and central laboratories and quantitative reverse transcription polymerase chain reaction by central laboratory. J Clin Oncol 2008; 26: 2473–2481

    Article  PubMed  Google Scholar 

  90. Sparano JA, Paik S. Development of the 21-gene assay and its application in clinical practice and clinical trials. J Clin Oncol 2008; 26: 721–728

    Article  PubMed  Google Scholar 

  91. Wolf I, Ben-Baruch N, Shapira-Frommer R, et al. Association between standard clinical and pathologic characteristics and the 21gene recurrence score in breast cancer patients: a population-based study. Cancer 2008; 112: 731–736

    Article  PubMed  Google Scholar 

  92. Goldstein LJ, Gray R, Badve S, et al. Prognostic utility of the 21-gene assay in hormone receptor-positive operable breast cancer compared with classical clinicopathologic features. J Clin Oncol 2008; 26: 4063–4071

    Article  PubMed  Google Scholar 

  93. Flanagan MB, Dabbs DJ, Brufsky AM, Beriwal S, Bhargava R. Histopathologic variables predict Oncotype DX recurrence score. Mod Pathol 2008; 21: 1255–1261

    Article  PubMed  CAS  Google Scholar 

  94. Esteban J, Baker J, Cronin M, et al. Tumor gene expression and prognosis in breast cancer: Multi-gene RT-PCR assay of paraffinembedded tissue. Proc Am Soc Clin Oncol 22: 2003; 20 March 2003; 2003 (abstr 3416)

    Google Scholar 

  95. Cobleigh MA, Bitterman P, Baker J, et al. Tumor gene expression predicts distant disease-free survival (DDFS) in breast cancer patients with 10 or more positive nodes: High throughput RT-PCR assay of paraffinembedded tumor tissues. Proc Am Soc Clin Oncol 22: 2003; 2003; 2003 (abstr 3415)

    Google Scholar 

  96. Paik S, Shak S, Tang G, et al. Multi-gene RT-PCR assay for predicting recurrence in node negative breast cancer patients-NSABP studies B-20 and B-14. 26th Annual San Antonio Breast Cancer Symposium; 2003 (abstr 82:A16)

    Google Scholar 

  97. NCCN. NCCN invasive Breast Cancer Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw 2007; 5: 246

    Google Scholar 

  98. Albain K, Barlow W, Shak S, et al. Prognostic and predictive value of the 21gene recurrence score assay in postmenopausal, node-positive (N+), ER-positive (ER+) breast cancer. SWOG 8814, TBCI 0100. San Antonio Breast Cancer Symposium; 12 January 2007; San Antonio (USA). San Antonio (USA): 2007

    Google Scholar 

  99. Goldstein LJ, Gray R, Childs BH, et al. Prognostic Utility of 21-Gene Assay in Hormone Receptor (HR) Positive Operable Breast Cancer and 0-3 Positive Axillary Nodes Treated with Adjuvant Chemohormonal Therapy (CHT): An Analysis of Intergroup Trial E2197. J Clin Oncol, 2007 ASCO Annual Meeting Proceedings Part I 2007; 25: 526

    Article  CAS  Google Scholar 

  100. Ramaswamy S, Golub TR. DNA microarrays in clinical oncology. J Clin Oncol 2002; 20: 1932–1941

    PubMed  CAS  Google Scholar 

  101. Ramaswamy S, Perou CM. DNA microarrays in breast cancer: the promise of personalised medicine. Lancet 2003; 361: 1576–1577

    Article  PubMed  Google Scholar 

  102. olub TR. A molecular signature of metastasis in primary solid tumors. Nat Genet 2003; 33: 49–54

    Article  CAS  Google Scholar 

  103. Vantveer LJ, Dai H, van d, V, et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 2002; 415: 530–536

    Article  CAS  Google Scholar 

  104. Bogaerts J, Cardoso F, Buyse M, et al. Gene signature evaluation as a prognostic tool: challenges in the design of the MINDACT trial. Nat Clin Pract Oncol 2006; 3: 540–551

    Article  PubMed  CAS  Google Scholar 

  105. Van de Vijver MJ, He YD, Van’t Veer LJ, et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 2002; 347: 1999–2009

    Article  PubMed  Google Scholar 

  106. Buyse M, Loi S, van’t VL, et al. Validation and clinical utility of a 70-gene prognostic signature for women with node-negative breast cancer. J Natl Cancer Inst 2006; 98: 1183–1192

    Article  PubMed  CAS  Google Scholar 

  107. Glas AM, Floore A, Delahaye LJ, et al. Converting a breast cancer microarray signature into a high-throughput diagnostic test. BMC Genomics 2006; 7: 278

    Article  PubMed  CAS  Google Scholar 

  108. Ach RA, Floore A, Curry B, et al. Robust interlaboratory reproducibility of a gene expression signature measurement consistent with the needs of a new generation of diagnostic tools. BMC Genomics 2007; 7: 148

    Article  CAS  Google Scholar 

  109. Mook S, Schmidt MK, Viale G, et al. The 70-gene prognosis-signature predicts disease outcome in breast cancer patients with 1-3 positive lymph nodes in an independent validation study. Breast Cancer Res Treat 2008

    Google Scholar 

  110. Thomassen M, Tan Q, Eiriksdottir F, Bak M, Cold S, Kruse TA. Prediction of metastasis from low-malignant breast cancer by gene expression profiling. Int J Cancer 2007; 120: 1070–1075

    Article  PubMed  CAS  Google Scholar 

  111. Wittner BS, Sgroi DC, Ryan PD, et al. Analysis of the MammaPrint breast cancer assay in a predominantly postmenopausal cohort. Clin Cancer Res 2008; 14: 2988–2993

    Article  PubMed  CAS  Google Scholar 

  112. Ravdin PM, Siminoff LA, Davis GJ, et al. Computer program to assist in making decisions about adjuvant therapy for women with early breast cancer. J Clin Oncol 2001; 19: 980–991

    PubMed  CAS  Google Scholar 

  113. Olivotto IA, Bajdik CD, Ravdin PM, et al. Population-based validation of the prognostic model ADJUVANT! for early breast cancer. J Clin Oncol 2005; 23: 271–625

    Google Scholar 

  114. Thomassen M, Tan Q, Eiriksdottir F, Bak M, Cold S, Kruse TA. Prediction of metastasis from low-malignant breast cancer by gene expression profiling. Int J Cancer 2006; 120: 1070–1075

    Article  CAS  Google Scholar 

  115. Janicke F, Schmitt M, Pache L, et al. Urokinase (uPA) and its inhibitor PAI-1 are strong and independent prognostic factors in node-negative breast cancer. Breast Cancer Res Treat 1993; 24: 195–208

    Article  PubMed  CAS  Google Scholar 

  116. Grebenschikov N, Geurts-Moespot A, De WH, et al. A sensitive and robust assay for urokinase and tissue-type plasminogen activators (uPA and tPA) and their inhibitor type I (PAI-1) in breast tumor cytosols. Int J Biol Markers 1997; 12: 6–14

    PubMed  CAS  Google Scholar 

  117. Bieche I, Onody P, Laurendeau I, et al. Real-time reverse transcription-PCR assay for future management of ERBB2-based clinical applications. Clin Chem 1999; 45: 1148–1156

    PubMed  CAS  Google Scholar 

  118. Bieche I, Laurendeau I, Tozlu S, et al. Quantitation of MYC gene expression in sporadic breast tumors with a real-time reverse transcription-PCR assay. Cancer Res 1999; 59: 2759–2765

    PubMed  CAS  Google Scholar 

  119. Spyratos F, Andrieu C, Vidaud D, et al. CCND1 mRNA overexpression is highly related to estrogen receptor positivity but not to proliferative markers in primary breast cancer. Int J Biol Markers 2000; 15: 210–214

    PubMed  CAS  Google Scholar 

  120. Gibson UE, Heid CA, Williams PM. A novel method for real time quantitative RT-PCR. Genome Res 1996; 6: 995–1001

    Article  PubMed  CAS  Google Scholar 

  121. Knoop A, Andreasen PA, Andersen JA, et al. Prognostic significance of urokinasetype plasminogen activator and plasminogen activator inhibitor-1 in primary breast cancer. Br J Cancer 1998; 77: 932–940

    Article  PubMed  CAS  Google Scholar 

  122. EORTC, European Organization for Research and Treatment of Cancer Breast Vancer-Cooperative Group. Revision of the standards for the assessment of hormone receptors in human breast cancer; report of the second E.O.R.T.C. Workshop, held on 16-17 March, 1979, in the Netherlands Cancer Institute. Eur J Cancer 1980; 16: 1513–1515

    Google Scholar 

  123. Grondahl-Hansen J, Christensen IJ, Rosenquist C, et al. High levels of urokinasetype plasminogen activator and its inhibitor PAI-1 in cytosolic extracts of breast carcinomas are associated with poor prognosis. Cancer Res 1993; 53: 2513–2521

    PubMed  CAS  Google Scholar 

  124. Span PN, Tjan-Heijnen VC, Manders P, Beex LV, Sweep CG. Cyclin-E is a strong predictor of endocrine therapy failure in human breast cancer. Oncogene 2003; 22: 4898–4904

    Article  PubMed  CAS  Google Scholar 

  125. Luther T, Kotzsch M, Meye A, et al. Identification of a novel urokinase receptor splice variant and its prognostic relevance in breast cancer. Thromb Haemost 2003; 89: 705–717

    PubMed  CAS  Google Scholar 

  126. Geurts-Moespot J, Leake R, Benraad TJ, Sweep CG. Twenty years of experience with the steroid receptor external quality assessment program — the paradigm for tumour biomarker EQA studies. On behalf of the EORTC Receptor and Biomarker Study Group. Int J Oncol 2000; 17: 13–22

    PubMed  CAS  Google Scholar 

  127. Offersen BV, Sorensen FB, Yilmaz M, Knoop A, Overgaard J. Chalkley estimates of angiogenesis in early breast cancer-relevance to prognosis. Acta Oncol 2002; 41: 695–703

    Article  PubMed  Google Scholar 

  128. Urban P, Vuaroqueaux V, Labuhn M, et al. Increased expression of urokinase-type plasminogen activator mRNA determines adverse prognosis in ErbB2-positive primary breast cancer. Journal of Clinical Oncology 2006; 24: 4245–4253

    Article  PubMed  CAS  Google Scholar 

  129. Hudis CA, Barlow WE, Costantino JP, et al. Proposal for standardized definitions for efficacy end points in adjuvant breast cancer trials: the STEEP system. J Clin Oncol 2007; 25: 2127–2132

    Article  PubMed  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag France, Paris

About this paper

Cite this paper

Spyratos, F. et al. (2012). Place des biomarqueurs dans la prise en charge du cancer du sein. In: Cancer du sein. Springer, Paris. https://doi.org/10.1007/978-2-8178-0245-9_26

Download citation

  • DOI: https://doi.org/10.1007/978-2-8178-0245-9_26

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-8178-0244-2

  • Online ISBN: 978-2-8178-0245-9

Publish with us

Policies and ethics