Skip to main content

Résumé

L’ovocyte qui va être fécondé a grandi en taille au sein de son follicule et s’est entouré de la zone pellucide, structure amorphe acellulaire composée de glycoprotéines au nombre de quatre dans l’espèce humaine (1). Cette zone pellucide va avoir plusieurs fonctions: la reconnaissance et la sélection du spermatozoïde fécondant, ainsi que le déclenchement de sa réaction acrosomique lui permettant de libérer les enzymes qu’il transporte dans l’acrosome. Ceux-ci vont lui permettre de rompre les liaisons entre la ZP1 et les polymères de ZP2-ZP3 afi n de se frayer un passage et de se propulser au travers de la zone pellucide grâce à ses battements flagellaires jusque dans l’espace périvitellin (2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. Lefievre L, Conner SJ, Salpekar A et al. (2004) Four zona pellucida glycoproteins are expressed in the human. Hum Reprod 19:1580–1586

    Article  PubMed  CAS  Google Scholar 

  2. Litscher, E, Williams Z, Wassarman P (2009) Zona pellucida glycoprotein ZP3 and fertilization in mammals. Mol Reprod Dev 76:933–941

    Article  PubMed  CAS  Google Scholar 

  3. De Jonge C (2005) Biological basis for human capacitation. Hum Reprod Update 11:205–214

    Article  PubMed  Google Scholar 

  4. Yanagimachi R (1978) Sperm-egg association in animals. Curr Top Dev Biol 12:83–105

    Article  PubMed  CAS  Google Scholar 

  5. Longo FJ, Chen DY (1985) Development of cortical polarity in mouse eggs: involvement of the meiotic apparatus. Dev Biol 107:382–394

    Article  PubMed  CAS  Google Scholar 

  6. Wolf JP, Ducot B, Kunstmann JM et al. (1992) Influence of sperm parameters on outcome of subzonal insemination in the case of previous IVF failure. off. Hum Reprod 7:1407–1413

    PubMed  CAS  Google Scholar 

  7. Ziyyat, A, Rubinstein E, Monier-Gavelle F et al. (2006) CD9 controls the formation of clusters that contain tetraspanins and the integrin alpha 6 beta 1, which are involved in human and mouse gamete fusion. J Cell Sci 119:416–424

    Article  PubMed  CAS  Google Scholar 

  8. Chen MS, Tung KS, Coonrod SA et al. (1999) Role of the integrin-associated protein CD9 in binding between sperm ADAM 2 and the egg integrin alpha6beta1: implications for murine fertilization. Proc Natl Acad Sci U S A. 96:11830–11835

    Article  PubMed  CAS  Google Scholar 

  9. Rubinstein E, Ziyyat A, Wolf JP et al. (2006) The molecular players of sperm-egg fusion in mammals. Semin Cell Dev Biol 17:254–263

    Article  PubMed  CAS  Google Scholar 

  10. Primakoff, P, Hyatt H, Tredick-Kline J (1987) Identification and purification of a sperm surface protein with a potential role in sperm-egg membrane fusion. J Cell Biol 104:141–149

    Article  PubMed  CAS  Google Scholar 

  11. Blobel CP, Wolfsberg TG, Turck C et al. (1992) A potential fusion peptide and an integrin ligand domain in a protein active in sperm-egg fusion. Nature 356:248–252

    Article  PubMed  CAS  Google Scholar 

  12. Evans, J. P, Kopf GS, Schultz RM (1997) Characterization of the binding of recombinant mouse sperm fertilin beta subunit to mouse eggs: evidence for adhesive activity via an egg beta1 integrin-mediated interaction. Dev Biol 187:79–93

    Article  PubMed  CAS  Google Scholar 

  13. Takahashi Y, Bigler D, Ito Y, White JM (2001) Sequencespecific interaction between the disintegrin domain of mouse ADAM 3 and murine eggs: role of betal integrin-associated proteins CD9, CD81, and CD98. Mol Biol Cell 12:809–820

    PubMed  CAS  Google Scholar 

  14. Nishimura H, Cho C, Branciforte D et al. (2001) Analysis of loss of adhesive function in sperm lacking cyritestin or fertilin beta. Dev Biol 233:204–213

    Article  PubMed  CAS  Google Scholar 

  15. Cho C, Ge E, Branciforte D et al. (2000) Analysis of mouse fertilin in wild-type and fertilin beta (-/-) sperm: evidence for C-terminal modification, alpha/beta dimerization, and lack of essential role of fertilin alpha in sperm-egg fusion. Dev Biol 222:289–295

    Article  PubMed  CAS  Google Scholar 

  16. Gould RJ, Polokoff MA, Friedman PA et al. (1990) Disintegrins: a family of integrin inhibitory proteins from viper venoms. Proc Soc Exp Biol Med 195:168–171

    PubMed  CAS  Google Scholar 

  17. Evans JP (2002) The molecular basis of sperm-oocyte membrane interactions during mammalian fertilization. Hum Reprod Update 8:297–311

    Article  PubMed  CAS  Google Scholar 

  18. Tomczuk M, Takahashi Y, Huang J et al. (2003) Role of multiple betal integrins in cell adhesion to the disintegrin domains of ADAMs 2 and 3. Exp Cell Res 290:68–81

    Article  PubMed  CAS  Google Scholar 

  19. Ji YZ, Wolf JP, Jouannet P, Bomsel M (1998) Human gamete fusion can bypass betal integrin requirement. Hum Reprod 13:682–689

    Article  PubMed  CAS  Google Scholar 

  20. Bronson R, Fusi F (1990) Sperm-oolemmal interaction: role of the Arg-Gly-Asp (RGD) adhesion peptide. Fertil Steril. 54:527–529

    PubMed  CAS  Google Scholar 

  21. Fusi FM, Lorenzetti I, Mangili F et al. (1994) Vitronectin is an intrinsic protein of human spermatozoa released during the acrosome reaction. Mol Reprod Dev 39:337–343

    Article  PubMed  CAS  Google Scholar 

  22. Sanchez-Mateos P, Cabanas C, Sanchez-Madrid F (1996) Regulation of integrin function. Semin Cancer Biol 7:99–109

    Article  PubMed  CAS  Google Scholar 

  23. Miyado K, Yamada G., Yamada S, et al. (2000) Requirement of CD9 on the egg plasma membrane for fertilization. Science 287:321–324

    Article  PubMed  CAS  Google Scholar 

  24. Almeida EA, Huovila APJ, Sutherland AE et al. (1995) Mouse egg integrin alpha 6 beta 1 functions as a sperm receptor. Cell 81:1095–1104

    Article  PubMed  CAS  Google Scholar 

  25. He ZY, Brakebusch C, Fassler R et al. (2003) None of the integrins known to be present on the mouse egg or to be ADAM receptors are essential for sperm-egg binding and fusion. Dev Biol 254:226–237

    Article  PubMed  CAS  Google Scholar 

  26. Takahashi Y, Yamakawa N, Matsumoto K et al. (2000) Analysis of the role of egg integrins in sperm-egg binding and fusion. Mol Reprod Dev 56:412–423

    Article  PubMed  CAS  Google Scholar 

  27. Barraud-Lange V, Naud-Barriant N, Saffar L et al. (2007) Alpha6beta1 integrin expressed by sperm is determinant in mouse fertilization. BMC Dev Biol 7:10

    Article  Google Scholar 

  28. Fusi FM, Tamburini C, Mangili F et al. (1996) The expression of alpha v, alpha 5, beta 1, and beta 3 integrin chains on ejaculated human spermatozoa varies with their functional state. Mol Hum Reprod 2:169–175

    Article  PubMed  CAS  Google Scholar 

  29. Boissonnas CC, Montjean D, Lesaffre C et al. (2010) Role of sperm alphavbeta3 integrin in mouse fertilization. Dev Dyn 239:773–783

    Article  PubMed  CAS  Google Scholar 

  30. Fusi FM, Bernocchi N, Ferrari A, Bronson R. (1996) Is vitronectin the velcro that binds the gametes together? Mol Hum Reprod 2:859–866

    Article  PubMed  CAS  Google Scholar 

  31. Reddy VR, Rajeev SK, Gupta V (2003) Alpha 6 beta 1 Integrin is a potential clinical marker for evaluating sperm quality in men. Fertil Steril 79Suppl 3:1590–1596

    Article  PubMed  Google Scholar 

  32. Le Naour, F, Rubinstein E, Jasmin C et al. (2000) Severely reduced female fertility in CD9-deficient mice. Science 287:319–321

    Article  PubMed  Google Scholar 

  33. Charrin S, Le Naour F, Silvie O et al. (2009) Lateral organization of membrane proteins: tetraspanins spin their web. Biochem J 420:133–154

    Article  PubMed  CAS  Google Scholar 

  34. Hemler ME (2003) Tetraspanin proteins mediate cellular penetration, invasion, and fusion events and define a novel type of membrane microdomain. Annu Rev Cell Dev Biol 19:397–422

    Article  PubMed  CAS  Google Scholar 

  35. Zhu GZ, Miller BJ, Boucheix C, et al. (2002) Residues SFQ (173–175) in the large extracellular loop of CD9 are required for gamete fusion. Development 129:1995–2002

    PubMed  CAS  Google Scholar 

  36. Boucheix C, Rubinstein E (2001) Tetraspanins. Cell Mol Life Sci 58:1189–1205

    Article  PubMed  CAS  Google Scholar 

  37. Levy S, Shoham T (2005) The tetraspanin web modulates immune-signalling complexes. Nat Rev Immunol 5:136–148

    Article  PubMed  CAS  Google Scholar 

  38. Charrin S, Le Naour F, Labas V et al. (2003) EWI-2 is a new component of the tetraspanin web in hepatocytes and lymphoid cells. Biochem J 373:409–421

    Article  PubMed  CAS  Google Scholar 

  39. Charrin S, Le Naour F, Oualid M et al. (2001) The major CD9 and CD81 molecular partner. Identification and characterization of the complexes. J Biol Chem 276:14329–14337

    PubMed  CAS  Google Scholar 

  40. Kaji K, Oda S, Miyazaki S, Kudo A (2002) Infertility of CD9-deficient mouse eggs is reversed by mouse CD9, human CD9, or mouse CD81; polyadenylated mRNA injection developed for molecular analysis of sperm-egg fusion. Dev Biol 247:327–334

    Article  PubMed  CAS  Google Scholar 

  41. Inoue N, Ikawa M, Isotani A, Okabe M (2005) The immunoglobulin superfamily protein Izumo is required for sperm to fuse with eggs. Nature 434:234–238

    Article  PubMed  CAS  Google Scholar 

  42. Sosnik J, Miranda PV, Spiridonov NA et al. (2009) Tssk6 is required for Izumo relocalization and gamete fusion in the mouse. J Cell Sci 122:2741–2749

    Article  PubMed  CAS  Google Scholar 

  43. Ziyyat A, Naud-Barriant N, Barraud-Lange V et al. (2005) Cyclic FEE peptide increases human gamete fusion and potentiates its RGD-induced inhibition. Hum Reprod 20:3452–3458

    Article  PubMed  CAS  Google Scholar 

  44. Bronson R, Fusi FM, Calzi F et al. (1999) Evidence that a functional fertilin-like ADAM plays a role in human spermoolemmal interactions. Mol Hum Reprod 5:433–440

    Article  PubMed  CAS  Google Scholar 

  45. Barraud-Lange V, Naud-Barriant N, DUCOT B et al. (2008) Cyclic QDE peptide increases fertilization rates and provides healthy pups in mouse. Fertil Steril 9:2110–2115

    Google Scholar 

  46. Joly E, Hudrisier D (2003) What is trogocytosis and what is its purpose? Nat Immunol 4:815

    Article  PubMed  CAS  Google Scholar 

  47. Barraud-Lange V, Naud Barriant N, Bomsel M, et al. (2007) Transfer of oocyte membrane fragments to fertilizing spermatozoa. FASEB J 21:3446–3449

    Article  PubMed  CAS  Google Scholar 

  48. Miyado K, Yoshida K, Yamagata K et al. (2008) The fusing ability of sperm is bestowed by CD9-containing vesicles released from eggs in mice. Proc Natl Acad Sci USA 105:12921–12926

    Article  PubMed  CAS  Google Scholar 

  49. Mattioli M, Gloria A, Mauro A et al. (2009) Fusion as the result of sperm-somatic cell interaction. Reproduction 138:679

    Article  PubMed  CAS  Google Scholar 

  50. Phillips DM, Shalgi R (1980) Surface architecture of the mouse and hamster zona pellucida and oocyte. J Ultrastruct Res 72:1–12

    Article  PubMed  CAS  Google Scholar 

  51. Dalo DT, Maccaffery JM, Evans JP (2008) Ultrastuructural analysis of egg menbrane abnormalities in post-ovulatory aged eggs. Int J Dev Biol 52:535–544

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag France, Paris

About this chapter

Cite this chapter

Wolf, JP. et al. (2011). L’interaction gamétique au cours de la fécondation. In: Physiologie, pathologie et thérapie de la reproduction chez l’humain. Springer, Paris. https://doi.org/10.1007/978-2-8178-0061-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-2-8178-0061-5_4

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-8178-0060-8

  • Online ISBN: 978-2-8178-0061-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics