Skip to main content

Convolutional turbo codes

  • Chapter
Codes and Turbo Codes

Part of the book series: Collection IRIS ((IRIS))

  • 1427 Accesses

Abstract

The error correction capability of a convolutional code increases when the length of the encoding register increases. This is shown in Figure 7.1, which provides the performance of four RSC codes with respective memories ? = 2, 4, 6 and 8, for rates 1/2, 2/3, 3/4 and 4/5, decoded according to the MAP algorithm. For each of the rates, the error correction capability improves with the increase in ?, above a certain signal to noise ratio that we can assimilate almost perfectly with the theoretical limit calculated in Chapter 3 and identified here by an arrow. To satisfy the most common applications of channel coding, a memory of the order of 30 or 40 would be necessary (from a certain length of register and for a coding rate 1/2, the minimum Hamming distance of a convolutional code with memory ? is of the order of ?). If we knew how to easily decode a convolutional code with over a billion states, we would no longer speak much about channel coding and this book would not exist.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Interaction channel for digital terrestrial television. DVB, ETSI EN 301 958, V1.1.1, pp. 28–30, Aug. 2001.

    Google Scholar 

  2. Interaction channel for satellite distribution systems. DVB, ETSI EN 301 790, V1.2.2, pp. 21–24, Dec. 2000.

    Google Scholar 

  3. Multiplexing and channel coding (fdd). 3GPP Technical Specification Group, TS 25.212 v2.0.0, June 1999.

    Google Scholar 

  4. Recommendations for space data systems. telemetry channel coding. Consultative Committee for Space Data Systems, BLUE BOOK, May 1998.

    Google Scholar 

  5. Ieee standard for local and metropolitan area networks, IEEE Std 802.16a, 2003. Available at http://standards.ieee.org/getieee802/download/802.16a-2003.pdf.

  6. L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv. Optimal decoding of linear codes for minimizing symbol error rate. IEEE Transactions on Information Theory, IT-20:284–287, March 1974.

    Article  MathSciNet  Google Scholar 

  7. G. Battail. Weighting of the symbols decoded by the viterbi algorithm. Annals of Telecommunications, 42(1–2):31–38, Jan.–Feb. 1987.

    Google Scholar 

  8. G. Battail. Coding for the gaussian channel: the promise of weighted-output decoding. International Journal of Satellite Communications, 7:183–192, 1989.

    Article  Google Scholar 

  9. C. Berrou. Some clinical aspects of turbo codes. In Proceedings of 3rd International Symposium on turbo codes & Related Topics, pages 26–31, Brest, France, Sept. 1997.

    Google Scholar 

  10. C. Berrou, P. Adde, E. Angui, and S. Faudeuil. A low complexity softoutput viterbi decoder architecture. In Proceedin gs of IEEE In t ern at ion al Conference on Communications (ICC′93), pages 737–740, GENEVA, May 1993.

    Google Scholar 

  11. C. Berrou, C. Douillard, and M. Jézéquel. Designing turbo codes for low error rates. In IEE colloquium: turbo codes in digital broadcasting — Could it double capacity?, pages 1–7, London, Nov. 1999.

    Google Scholar 

  12. C. Berrou, C. Douillard, and M. Jézéquel. Multiple parallel concatenation of circular recursive convolutional (crsc) codes. Annals of Telecommunications, 54(3–4):166–172, March–Apr. 1999.

    Google Scholar 

  13. C. Berrou and A. Glavieux. Reflections on the prize paper: “near optimum error correcting coding and decoding: turbo codes”. IEEE IT Society Newsletter, 48(2):136–139, June 1998. www.ieeeits.org/publications/nltr/98_jun/reflections.html.

    Google Scholar 

  14. C. Berrou, A. Glavieux, and P. Thitimajshima. Near shannon limit errorcorrecting coding and decoding: turbo-codes. In Proceedings of IEEE International Conference on Communications (ICC93), pages 1064–1070, GENEVA, May 1993.

    Google Scholar 

  15. C. Berrou and M. Jézéquel. Frame-oriented convolutional turbo-codes. Electronics letters, 32(15):1362–1364, July 1996.

    Article  Google Scholar 

  16. C. Berrou and M. Jézéquel. Non binary convolutional codes for turbo coding. Electronics Letters, 35(1):39–40, Jan. 1999.

    Article  Google Scholar 

  17. C. Berrou, Y. Saouter, C. Douillard, S. Kerouédan, and M. Jézéquel. Designing good permutations for turbo codes: towards a single model. In Proceedings of IEEE International Conference on Communications (ICC04), Paris, France, June 2004.

    Google Scholar 

  18. C. Berrou, S. Vaton, M. Jézéquel, and C. Douillard. Computing the minimum distance of linear codes by the error impulse method. In Proceedings of IEEE Global Communication Conference (Globecom2002), pages 1017–1020, Taipei, Taiwan, Nov. 2002.

    Google Scholar 

  19. E. Boutillon and D. Gnaedig. Maximum spread of d-dimensional multiple turbo codes. IEEE Transanction on Communications, 53(8):1237–1242, Aug. 2005.

    Article  Google Scholar 

  20. A. R. Calderbank. The art of signaling: fifty years of coding theory. IEEE Transactions on Information Theory, 44(6):2561–2595, Oct. 1998.

    Article  MATH  MathSciNet  Google Scholar 

  21. S. Crozier and P. Guinand. Distance upper bounds and true minimum distance results for turbo-codes with drp interleavers. In Proceedings of 3rd International Symposium on turbo codes & Related Topics, pages 169–172, Brest, France, Sept. 2003.

    Google Scholar 

  22. S. Crozier, P. Guinand, and A. Hunt. Computing the minimum distance of turbo-codes using iterative decoding techniques. In Proceedings of the 22nd Biennial Symposium on Communications, pages 306–308, Kingston, Ontario, Canada, 2004, May 31–June 3.

    Google Scholar 

  23. C. Douillard and C. Berrou. Turbo codes with rate-m/(m+1) constituent convolutional codes. IEEE Trans. Commun., 53(10):1630–1638, Oct. 2005.

    Article  Google Scholar 

  24. L. Duan and B. Rimoldi. The iterative turbo decoding algorithm has fixed points. IEEE Transactions on Information Theory, 47(7):2993–2995, Nov. 2001.

    Article  MATH  MathSciNet  Google Scholar 

  25. P. Elias. Error-free coding. IEEE Transactions on Information Theory, 4(4):29–39, Sept. 1954.

    Article  MathSciNet  Google Scholar 

  26. R. G. Gallager. Low-density parity-check codes. IRE Transactions on Information Theory, IT-8:21–28, Jan. 1962.

    Article  MathSciNet  Google Scholar 

  27. R. Garello and A. Vila Casado. The all-zero iterative decoding algorithm for turbo code minimum distance computation. In Proceedings of IEEE International Conference on Communications (ICC′2004), pages 361–364, Paris, France, 2004.

    Google Scholar 

  28. R. Garello, P. Pierloni, and S. Benedetto. Computing the free distance of turbo codes and serially concatened codes with interleavers: Algorithms and applications. IEEE Journal on Selected Areas in Communications, May 2001.

    Google Scholar 

  29. K. Gracie and M.-H. Hamon. Turbo and turbo-like codes: Principles and applications in telecommunications. In Proceedings of the IEEE, volume 95, pages 1228–1254, June 2007.

    Article  Google Scholar 

  30. J. Hagenauer and P. Hoeher. Concatenated viterbi-decoding. In Proceedings of International Workshop on Information Theory, pages 136–139, Gotland, Sweden, Aug.–Sept. 1989.

    Google Scholar 

  31. J. Hagenauer and P. Hoeher. A viterbi algorithm with soft-decision outputs and its applications. In Proceedings of IEEE Global Commu nications Conference (Globecom′89), pages 1680–1686, Dallas, Texas, USA, Nov. 1989.

    Google Scholar 

  32. J. Hagenauer and P. Hoeher. Turbo decoding with tail-biting trellises. In Proceedings of Signals, Systems and Electronics, URSI Int’l Symposium, pages 343–348, Sept.–Oct. 1998.

    Google Scholar 

  33. G. H. Hardy and E. M. Wright. An Introduction to the Theory of Numbers. Oxford Univ. Press, Oxford, UK, 1979.

    MATH  Google Scholar 

  34. C. Heegard and S. B. Wicker. Chapter 3. In Turbo coding. Kluwer Academic Publishers, 1999.

    Google Scholar 

  35. H. Lin and D. G. Messerschmitt. Algorithms and architectures for concurrent viterbi decoding. In Proceedings of IEEE International Conference on Communications (ICC′89), pages 836–840, Boston, June 1989.

    Google Scholar 

  36. R. L. Rivest. Permutation polynomials modulo 2w. Finite Fields Their Applications, 7:287–292, Apr. 2001.

    Article  MATH  MathSciNet  Google Scholar 

  37. P. Robertson, P. Hoeher, and E. Villebrun. Optimal and suboptimal maximum a posteriori algorithms suitable for turbo decoding. European Transactions on Telecommunication, 8:119–125, March–Apr. 1997.

    Article  Google Scholar 

  38. E. Rosnes and O. Y. Takeshita. Optimum distance quadratic permutation polynomial-based interleavers for turbo codes. In Proceedings of IEEE International Symposyum on Information Theory (ISIT′07), pages 1988–1992, Seattle, Washington, July 2006.

    Google Scholar 

  39. J. Ryu and O. Y. Takeshita. On quadratic inverses for quadratic permutation polynomials over integer rings. IEEE Transactions On Information Theory, 52:1254–1260, March 2006.

    Article  MathSciNet  Google Scholar 

  40. H. R. Sadjadpour, N. J. A. Sloane, M. Salehi, and G. Nebe. Interleaver design for turbo codes. IEEE Journal on Selected Areas in Commununications, 19(5):831–837, May 2001.

    Article  Google Scholar 

  41. J. Sun and O. Y. Takeshita. Interleavers for turbo codes using permutation polynomials over integer rings. IEEE Transactions On Information Theory, 51:101–119, Jan. 2005.

    Article  MathSciNet  Google Scholar 

  42. Y. V. Svirid. Weight distributions and bounds for turbo-codes. European Transactions on Telecommunication, 6(5):543–55, Sept.–Oct. 1995.

    Article  Google Scholar 

  43. O. Y. Takeshita. On maximum contention-free interleavers and permutation polynomials over integer rings. IEEE Transactions On Information Theory, 52:1249–1253, March 2006.

    Article  MathSciNet  Google Scholar 

  44. O. Y. Takeshita. Permutation polynomial interleavers: an algebraic-geometric perspective. IEEE Transactions On Information Theory, 53:2116–2132, June 2007.

    Article  MathSciNet  Google Scholar 

  45. R. M. Tanner. A recursive approach to low complexity codes. IEEE Transactions on Information Theory, IT-271:533–547, Sept. 1981.

    Article  MathSciNet  Google Scholar 

  46. S. ten Brink. Convergence behavior of iteratively decoded parallel concatenated codes. IEEE Transactions On Communications, 49(10), Oct. 2001.

    Google Scholar 

  47. Z. Wang, Z. Chi, and K. K. Parhi. Area-efficient high-speed decoding schemes for turbo decoders. IEEE Trans. VLSI Systems, 10(6):902–912, Dec. 2002.

    Article  Google Scholar 

  48. C. Weiss, C. Bettstetter, and S. Riedel. Code constuction and decoding of parallel concatenated tail-biting codes. IEEE Comm. Letters, 47(1):366–386, Jan. 2001.

    MATH  MathSciNet  Google Scholar 

  49. Y. Weiss and W. T. Freeman. On the optimality of solutions of the max-product belief-propagation algorithm in arbitrary graphs. IEEE Transactions on Information Theory, 47(2):736–744, Feb. 2001.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag France, Paris

About this chapter

Cite this chapter

(2010). Convolutional turbo codes. In: Berrou, C. (eds) Codes and Turbo Codes. Collection IRIS. Springer, Paris. https://doi.org/10.1007/978-2-8178-0039-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-2-8178-0039-4_7

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-8178-0038-7

  • Online ISBN: 978-2-8178-0039-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics