Skip to main content

Mécanismes de résistance à la chimiothérapie

  • Chapter
Cancer du sein avancé

Abstrait

Le développement de mécanisme de résistance par la tumeur est un obstacle majeur de l’efficacité à la chimiothérapie. Ces mécanismes sont complexes et multifactoriels. Ils sont le reflet du polymorphisme de la tumeur (instabilité génomique et mutations).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. Flouvat B (1991) Pharcocinétique, Manuel de thérapeutqiue médicale. Paris: Masson: 16–22

    Google Scholar 

  2. Michael M, Doherty MM (2005) Tumoral drug metabolism: overview and its implications for cancer therapy. J Clin.Oncol 23: 205–29

    Article  PubMed  CAS  Google Scholar 

  3. Royer I, Monsarrat B, Sonnier M. et al. (1996) Metabolism of docetaxel by human cytochromes P450: Interactions with paclitaxel and other antineoplastic drugs. Cancer Res 56: 58–65

    PubMed  CAS  Google Scholar 

  4. Miyoshi Y, Ando A, Takamura Y et al. (2002) Prediction of response to docetaxel by CYP3A4 mRNA expression in breast cancer tissues. Int J Cancer 97: 129–32

    Article  PubMed  CAS  Google Scholar 

  5. Beck A, Etienne MC, Cheradame S et al. (1994) A role for dihydropyrimidine dehydrogenase and thymidylate synthase in tumour sensitivity to fluorouracil. Eur J Cancer 30: 1517–22

    Article  Google Scholar 

  6. Nita ME, Tominaga O, Nagawa H et al. (1998) Dihydropyrimidine dehydrogenase but not thymidylate synthase expression is associated with resistance to 5-fluorouracil in colorectal cancer. Hepatogastroenterology 45: 2117–22

    PubMed  CAS  Google Scholar 

  7. Etienne MC, Cheradame S, Fischel JL et al. (1995) Response to fluorouracil therapy in cancer patients: The role of tumoral dihydropyrimidine dehydrogenase activity. J Clin Oncol 13: 1663–70

    PubMed  CAS  Google Scholar 

  8. Danenberg K, Salonga D, Park CG et al. (1998) Dihydropyrimidine dehydrogenase and thymidylate synthase gene expressions identify a high percentage of colorectal tumors responding to 5-fluorouracil. Proc Am Soc Clin Oncol 17: 258a (Abstract 992)

    Google Scholar 

  9. Salonga D, Danenberg KD, Johnson M. et al. (2000) Colorectal tumors responding to 5-fluorouracil have low gene expression levels of dihydropyrimidine dehydrogenase, thymidylate synthase, and thymidine phosphorylase. Clin Cancer Res 6: 1322–7

    PubMed  CAS  Google Scholar 

  10. Slatter JG, Su P, Sams JP et al. (1997) Bioactivation of the anticancer agent CPT-11 to SN-38 by human hepatic microsomal carboxylesterases and the in vitro assessment of potential drug interactions. Drug Metab Dispos 25: 1157–64

    PubMed  CAS  Google Scholar 

  11. Cummings J, Ethell BT, Jardine L et al. (2003) Glucuronidation as a mechanism of intrinsic drug resistance in human colon cancer: Reversal of resistance by food additives. Cancer Res 63: 8443–50

    PubMed  CAS  Google Scholar 

  12. Takahashi T, Fujiwara Y, Yamakido M. et al. (1997) The role of glucuronidation in 7-ethyl-10-hydroxycamptothecin resistance in vitro. Jpn J Cancer Res 88: 1211–7

    PubMed  CAS  Google Scholar 

  13. Sladek NE, Kollander R, Sreerama et al. (2002) Cellular levels of: Aldehyde dehydrogenase (ALDH1 and ALDH2) as predictor of therapeutic responses to cyclophosphamide-based chemotherapy of breast cancer: a retrospective study-Rational individualization of-based cancer chemotherapeutic regimens. Cancer Chemother Pharmacol 49: 309–21

    Article  PubMed  CAS  Google Scholar 

  14. Sweeney C, Ambrosone CB, Joseph L et al. (2003) Association between a glutathione S-transferase A1 promoter polymorphism and survival after breast cancer treatment. Int J Cancer 103: 810–4

    Article  PubMed  CAS  Google Scholar 

  15. Minchinton A, Tannock IF (2006) Drug penetration in solid tumours. Nature Review/Cancer 6: 583–92

    Article  CAS  Google Scholar 

  16. Bertino JR (1993) Karnosky memorial lecture. Ode to methotrexate. J Clin Oncol 11: 5–14

    PubMed  CAS  Google Scholar 

  17. Gorlick R, Bertino JR (1999) Clinical pharmacology and resistance to dihydrofolate reductase inhibitors. In antifolate drugs in cancer therapy. Jackman AL (ed). Humana Press: Totowa, NJ

    Google Scholar 

  18. Guo W, Healey JH, Meyers PA et al. (1999) Mechanisms of methotrexate resistance in osteosarcoma. Clin Cancer Res 5: 621–7

    PubMed  CAS  Google Scholar 

  19. Laverdiere C, Chiasson S, Costea I et al. (2002) Polymorphism G80A in the reduced folate carrier gene and its relationship to methotrexate plasma levels and outcome of childhood acute lymphoblastic leukaemia. Blood 100: 3832–4

    Article  PubMed  Google Scholar 

  20. Huang Y, Sadée W (2006) Membrane transporters and chanels in chemoresistance and sensitivity of tumor cells. Cancer Letters 239: 168–82

    Article  PubMed  CAS  Google Scholar 

  21. Szakacs G, Paterson JK, Ludwig JA et al. (2006) Targeting mutidrug resistance in cancer. Nature Rev Cancer 5: 219–34

    Article  CAS  Google Scholar 

  22. Thomas H, Coley HM (2003) Overcoming mutidrug resistance in cancer: an update on the clinical strategy of inhibiting p-glycoprotein. Cancer Control 10: 159–65

    PubMed  Google Scholar 

  23. Krishna R, Mayer LD (2000) Multidrug resistance (MDR) in cancer. Mechanisms, reversal using modulators of MDR and the role of MDR modulators in influencing the pharmacokinetics of cancer drugs. Eur J Pharm Sci 11: 265–83

    Article  PubMed  CAS  Google Scholar 

  24. Lenz HL, Hayashi K, Salonga D et al. (1998) p53 point mutations and thymidilate synthase messenger RNA levels in dissemined colorectal cancer/an analysis of response and survival: Clin Cancer Res 4: 1243–50

    PubMed  CAS  Google Scholar 

  25. Longley DB, Ferguson PR, Boyer J et al. (2001) Characterisation of a thymidilate synthase (TS)-inductible cell line: a model system for studying sensitivity to TS and no TS targeted chemotherapies. Clin Cancer Res 7: 3533–9

    PubMed  CAS  Google Scholar 

  26. Marsh S, McLeod HL (2001) Thymidylate synthase pharmacogenomics in colorectal cancer. Clin Colorectal Cancer 1: 175–8

    PubMed  CAS  Google Scholar 

  27. Longley DB, Boyer J, Allen WL et al. (2002) The role of thymidilate synthase induction in modulating p53-regulated gene expression in response to 5-fluorouracil and anti-folates. Cancer Res 62: 2644–9

    PubMed  CAS  Google Scholar 

  28. Di Leo A, Isola J (2003) Topoisomerase II alpha as a marker predicting the efficacy of anthracyclines in breast cancer: are we at the end of beginning. Clin Cancer Cancer 4: 179–86

    Google Scholar 

  29. Jordan MA, Wilson L (2004) Microtubules as a target for anticancer drugs. Nat Rev Cancer 4: 253–65

    Article  PubMed  CAS  Google Scholar 

  30. Dumontet C, Sikic BI (1999) Mechanisms of action and resistance to antitubilin agents: microtubule dynamics, drugs transport, and cell death. J Clin Oncol 17: 1061–70

    PubMed  CAS  Google Scholar 

  31. Kavallaris M, Tait AS, Walsh BJ et al. (2001) Multiple microtubule alterations are associated with vinca alkaloid resistance in human leukemia cells. Cancer Res 61: 5803–9

    PubMed  CAS  Google Scholar 

  32. Burkhart CA, Kavallis M, Band Horwitz S (2001) The role of ß-tubulin isotype in resistance to antimitotic drugs. Biochim Biophys Acta 1471: 01–09

    Google Scholar 

  33. Giannakakou P, Sackett DL, Kang YK et al. (1997) Paclitaxel resistant human ovarian cancer cells have mutant ß-tubulin that exhibit imparaid paclitaxel — driven polymerisation. J Biol Chem 272: 17118–25

    Article  PubMed  CAS  Google Scholar 

  34. Rouzier R, Rajan R, Wagner P et al. (2005) Microtubules associated protein tau: a marker of paclitaxel sensitivity in breast cancer. PNAS 23: 8315–20

    Article  CAS  Google Scholar 

  35. Reardon JT, Vaisman A, Chaney SG et al. (1999) Efficient nucleotide excision repair of cisplatin, oxalipaltin, and bis-aceto-amine-dichloro-cyclohexylamine-platinium (IV) (JM216) platinium intrastrand DNA diadducts. Cancer Res 59: 3968–71

    PubMed  CAS  Google Scholar 

  36. Chaney SG, Sancar A (1996) DNA reopair: enzymatic mechanisms and revelance to drug response. J Natl Cancer Inst 88: 1346–60

    Article  PubMed  CAS  Google Scholar 

  37. Furuta T, Ueda T, Aune G et al. (2000) Transcription-coupled nucleotide excision repair as a determinant of cisplatin sensitivity of human cells. Cancer Res 62: 4899–902

    Google Scholar 

  38. Lee KB, Parker RJ, Borh V et al. (1993) Cisplatin sensitivity/resistance in UV repair-deficient Chineses hamster ovary cells of complementation groups 1 and 3. Carcinogenesis 14: 2177–88

    Article  PubMed  CAS  Google Scholar 

  39. Youn CK, Kim NH, Cho HJ et al. (2004) Oncogenic H-Ras up-regulates expression of ERCC1 to protect cells to platinium based anticancers agents. Cancer Res 64: 4849–57

    Article  PubMed  CAS  Google Scholar 

  40. Dabholkar M, Vionnet J, Bostick-Bruton et al. (1994) Messenger RNA levels of XPAC and ERCC1 in ovarian cancer tissue correlate with response to platinium-based chemotherapy. J Clin Invest 94: 703–8

    PubMed  CAS  Google Scholar 

  41. Metzger R, Leichman CG, Danenberg KD et al. (1998) ERCC1 mRNA levels complement thymidylate synthase mRNA levels predicting response and survival for gastric cancer patients receiving combination cisplatin and fluorouracil chemotherapy. J Clin Oncol 16: 309–16

    PubMed  CAS  Google Scholar 

  42. Shirota Y, Stoehlmacher J, Brabender J et al. (2001) ERCC1 and thymidilate synthase mRNA levels predict survival for colorectal cancer patients receiving combination oxaliplatin and fluorouracil chemotherapy. J Clin Oncol 19: 4298–304

    PubMed  CAS  Google Scholar 

  43. Selvakumaran M, Pisarcik DA, Bao R et al. (2003) Enhanced cisplatin cytotoxicity by disturbing the nucleotide excision repair pathway in ovarian cancer cells lines. Cancer Res 63: 1311–6

    PubMed  CAS  Google Scholar 

  44. Fedier A, Schwartz VA, Walt H et al. (2001) Resistance to topoisomerase poisons due to loss of DNA mismatch repair. Inter J Cancer 93: 571–6

    Article  Google Scholar 

  45. Drummond JT, Anthoney A, Brown R et al. (1996) Cisplatin and adriamycin resistance are associated with mutLalpha and mismatch repair deficiency in an ovarian tumor cell line. J Biol Chem 271: 19645–8

    Article  PubMed  CAS  Google Scholar 

  46. Fink D, Nebel S, Norris PS et al. (1998) The effect of different chemotherapeutic agents on the enrichment of DNA mismatch repair-deficient tumor cells. Br J Cancer 77: 703–8

    PubMed  CAS  Google Scholar 

  47. Plumb JA, Strathdee G, Sludden J et al. (2000) Reversal of drug resistance in human tumor xenografts by 2’-deoxy-5-azacytidine-induced demethylation of hMLH1 gene promoter. Cancer Res 60: 6039–44

    PubMed  CAS  Google Scholar 

  48. Volgelstein B, Lane D, Levine AJ (2000) Surfing the p53 network. Nature 408: 307–10

    Article  CAS  Google Scholar 

  49. Levine AJ (1997) p 53, the cellular gatekeeper for growth and division. Cell 88: 323–31

    Article  PubMed  CAS  Google Scholar 

  50. Feng J, Tamaskovic R, Yang Z et al. (2004) Stabilization of Mdm2 via decreased ubiquitination is mediated by protein kinase B/Akt-dependant phosphorylation. J Biol Chem 279: 35510–7

    Article  PubMed  CAS  Google Scholar 

  51. Schuler M, Gren DR (2001) Mechanisms of p 53-dependant apoptosis. Biochem Soc Trans 29: 684–8

    Article  PubMed  CAS  Google Scholar 

  52. Bunz F, Hwang KC, Torrance C et al. (1999) Disruption of p 53 in human cancer cells alters the response to therapeutic agents. J Clin Invest 104: 263–9

    Article  PubMed  CAS  Google Scholar 

  53. Liang JT, Huag KC, Cheng YM et al. (2002) p 53 overexpression predicts poor chemosensitivity to high dose 5-Fluorouracil plus leucovorin chemotherapy for stage IV colorectal cancers after palliative bowel resection. Int J Cancer 97: 451–7

    Article  PubMed  CAS  Google Scholar 

  54. Ahnen DJ, Feigl P, Quan G et al. (1998) Ki-ras mutation and p 53 overexpression predict the clinical behaviour of colorectal cancer: Southwest Oncology Group. Cancer Res 58: 1149–58

    PubMed  CAS  Google Scholar 

  55. Fan S, el-Deiry WS, Bae I et al. (1994) p 53 gene mutations are associated with decreased sensitivity of human lymphoma cells to DNA damaging agents. Cancer Res 54: 5824–30

    PubMed  CAS  Google Scholar 

  56. Perego P, Giarola M, Righetti SC et al. (1996) Association between cisplatin resistan, ce and mutation of p 53 gene and reduced bx expression in ovarian carcinoma cell systems. Cancer Res 56: 556–62

    PubMed  CAS  Google Scholar 

  57. Fan S, Smith ML, Rivet DJ et al. (1995) Disruption of p53 function sensitizes breast cancer MCF 7 cells to cisplatinin and pentoxifylline. Cancer Res 55: 1649–54

    PubMed  CAS  Google Scholar 

  58. Hawkins DS, Demers GW, Galloways DA (1996) Inactivation of p53 enhances sensitivity to multiple chemotherapeutic agents. Cancer Res 56: 892–8

    PubMed  CAS  Google Scholar 

  59. Dart DA, Picksley SM, Cooper PA et al. (2004) The role of p 53 in the chemotherapeutic responses to cisplatin, doxorubicin and 5 flurouracil. Int J Oncol 24: 115–25

    PubMed  CAS  Google Scholar 

  60. Wahl AF, Donaldson KL, Fairchild C et al. (1996) Loss of normal p53 function confers sensitization to taxol by increasing G2/M. arrest and apoptosis. Nat Med 2: 72–6

    Article  PubMed  CAS  Google Scholar 

  61. Johnson KR, Fan W (2002) Reduced expression of p53 and p21waf1/CIP1 sensitizes human breast cancer cells to placlitaxel and its combination with 5-fluodrouracil. Anticancer Res 22: 3197–204

    PubMed  CAS  Google Scholar 

  62. Lavarino C, Pilotti S, Oggionni M et al. (2000) p 53 gene status and response toplatinium/paclitaxel based chemotherapy in advanced ovarian carcinoma. J Clin Oncol 18: 3936–45

    PubMed  CAS  Google Scholar 

  63. Adams JM, Cory S (2007) The Bcl2 apoptotic switch in cancer development. Oncogene 26: 1324–37

    Article  PubMed  CAS  Google Scholar 

  64. Miyashita T, Reed JC (1992) Bcl-2 gene transfer increases relative resistance of S49.1 abd WEH17.2 lymphoid cells to cell death and DNA fragmentation induced by glucocorticoids and chemotherapeutic drugs. Cancer Res 52: 5407–11

    PubMed  CAS  Google Scholar 

  65. Sakakura C, Sweeney EA, Schirahama T et al. (1997) Overexpression of bax sensitizes breast cancer MCF-7 cells to cisplatin and etoposide. Sur Today 27: 676–9

    Article  CAS  Google Scholar 

  66. Backus HH, Dukers DF, van Groeningen CJ et al. (2001) 5 fluorouracil induced Fas upregulation associated with apoptosis in liver metastasis of colorectal cancer patients. Ann Oncol 12: 209–12

    Article  PubMed  CAS  Google Scholar 

  67. O’Connel J, Bennnet MW, O’Sullivan et al. (1999) Resistance to Fas (APO-1/CD95) mediated apoptosis and expression of Fas ligand in esophogal cancer: the Fas counterattack. Dis Esophagus 12: 83–9

    Article  Google Scholar 

  68. Botti C, Buglioni S, Benevolo M et al. (2004) Altered expression of FAS system is related to adverse clinical outcome in stage I-II breast cancer patientstreated with adjuvant anthracyclines based chemotherapy. Clin Caner Res 10: 1360–5

    Article  CAS  Google Scholar 

  69. Nakamura M, Tsujii N, N’Asanuma K et al. (2004) Survivin as a predictor of cisdiamminedichloroplatinium sensitivity in gastric cancer patient. Cancer Sci 95: 44–51

    Article  PubMed  CAS  Google Scholar 

  70. Zaffaroni N, Pennati M, Colella G et al. (2002) Expression of the anti-apoptotic gene surviving correlates with taxol resistance in human ovarian carcinoma. Cell Mol Life Sci 59: 1406–12

    Article  PubMed  CAS  Google Scholar 

  71. Kato J, Kuwabara Y, Mitani M et al. (2001) Expression of survivin in esophageal cancer: correlation withyn the prognosis and response to chemotherapy. Int J Cancer 95: 92–5

    Article  PubMed  CAS  Google Scholar 

  72. Blume-Jensen P, Huntet T (2001) Oncogenic kinase signalling. Nature 411: 355–65

    Article  PubMed  CAS  Google Scholar 

  73. Yu H, Jove R (2004) The STAs of cancer-new molecular targets come of age. Nature Rev Cancer 4: 97–105

    CAS  Google Scholar 

  74. Bromberg JF, Wrzeszczynska MH, Devgan G et al. (1999) STAT3 as an oncogene. Cell 98: 295–303

    Article  PubMed  CAS  Google Scholar 

  75. Real PJ, Sierra A, De Juan A et al. (2002) Resistance to chemotherapy via STA3-dependant overexpression of Bcl-2 in metastatic breast cancer cells. Oncogene 21: 7611–8

    Article  PubMed  CAS  Google Scholar 

  76. Masuda M, Toh S, Koike K et al. (2002) The roles of JNK1 and STAT3 in the response of head and neck cancer cell lines to combined treatment with all-trans retinoic acid and 5 Fluodrouracil. Jpn J Cancer Res 93: 329–39

    PubMed  CAS  Google Scholar 

  77. Khono K, Uchiumi T, Niina I et al. (2005) Transcription factors and drug resistance. Eur J Cancer 41: 2577–88

    Article  CAS  Google Scholar 

  78. Lin A, Karin M. (2002) NF-kappaB in cancer: from innocent bystander to major culprit. Nature Rev Cancer 2: 301–10

    Article  CAS  Google Scholar 

  79. Arlt A, Gehrz A, Muerkoster S et al. (2003) Role of NF-KappaB and Akt/PI3K in the resistance of pancreatic carcinoma cell lines against gencitabine-induced cell death. Oncogene 23: 3243–51

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag France

About this chapter

Cite this chapter

Campone, M. et al. (2007). Mécanismes de résistance à la chimiothérapie. In: Cancer du sein avancé. Springer, Paris. https://doi.org/10.1007/978-2-287-72615-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-2-287-72615-6_14

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-287-72614-9

  • Online ISBN: 978-2-287-72615-6

Publish with us

Policies and ethics