Skip to main content

Les autres inhibiteurs tyrosine kinase de KIT ou de la voie AKT

  • Chapter
Les thérapies ciblées

Part of the book series: Oncologie pratique ((ONCOLPRAT))

  • 380 Accesses

Abstrait

Les tumeurs stromales gastro-intestinales sont des tumeurs rares, pouvant se localiser à tous les étages du tractus digestif, et représentant 10 à 50% des sarcomes des tissus mous. Elles représentent une entité nosologique particulière depuis la découverte de leur lien avec les cellules de Cajal, les cellules pacemakers de la motricité digestive. Sur le plan phénotypique, les cellules tumorales de GIST sont caractérisées par ľexpression du marqueur CD34, commun aux cellules de Cajal, et par ľexpression du récepteur tyrosine kinase c-kit (CD117) sous une forme mutée et/ou activée (1). Les GIST représentent désormais une entité nosologique particulière depuis la découverte en 1998 de ľexpression par les cellules tumorales du récepteur tyrosine kinase c-kit (CD117) sous une forme mutée et/ou activée à la surface des cellules tumorales (2). Ces mutations sont de survenue précoce et il est possible qu’elles constituent même ľévénement oncogénétique initial de la maladie. Avant ľimatinib, la chirurgie était le seul traitement efficace de cette pathologie, la chimiothérapie restant globalement inopérante, et la radiothérapie non applicable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. Mazur MT, Clark HB (1983) Gastric stromal tumors. Reappraisal of histogenesis. Am J Surg Pathol 7: 507–19

    Article  PubMed  CAS  Google Scholar 

  2. Kindblom LG, Remotti HE, Aldenborg F, Meis-Kindblom JM (1998) Gastrointestinal pacemaker cell tumor (GIPACT): gastrointestinal stromal tumors show phenotypic characteristics of the interstitial cells of Cajal. Am J Pathol 152: 1259–69

    PubMed  CAS  Google Scholar 

  3. Longley BJ, Reguera MJ, Ma Y (2001) Classes of c-KIT activating mutations: proposed mechanisms of action and implications for disease classification and therapy. Leuk Res 25: 571–6

    Article  PubMed  CAS  Google Scholar 

  4. Nishida T, Hirota S, Taniguchi M, et al. (1998) Familial gastrointestinal stromal tumours with germline mutation of the KIT gene. Nat Genet 19: 323–4

    Article  PubMed  CAS  Google Scholar 

  5. Linnekin D (1999) Early signaling pathways activated by c-Kit in hematopoietic cells. Int J Biochem Cell Biol 31: 1053–74

    Article  PubMed  CAS  Google Scholar 

  6. Heinrich MC, Corless CL, Duensing A, et al. (2003) PDGFRA activating mutations in gastrointestinal stromal tumors. Science 299: 708–10

    Article  PubMed  CAS  Google Scholar 

  7. Miettinen M, Sarlomo-Rikala M, Lasota J (1999) Gastrointestinal stromal tumors: recent advances in understanding of their biology. Hum Pathol 30: 1213–20

    Article  PubMed  CAS  Google Scholar 

  8. Rubin BP, Singer S, Tsao C, et al. (2001) KIT activation is a ubiquitous feature of gastrointestinal stromal tumors. Cancer Res 61: 8118–21

    PubMed  CAS  Google Scholar 

  9. Heinrich MC, Corless CL, Demetri GD, et al. (2003) Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumor. J Clin Oncol 21: 4342–9

    Article  PubMed  CAS  Google Scholar 

  10. Cunningham D, Findlay M (1993) The chemotherapy of colon cancer can no longer be ignored. Eur J Cancer 29A(15):2077–9

    Article  PubMed  CAS  Google Scholar 

  11. Taniguchi M, Nishida T, Hirota S, et al. (1999) Effect of c-kit mutation on prognosis of gastrointestinal stromal tumors. Cancer Res 59: 4297–300

    PubMed  CAS  Google Scholar 

  12. Singer S, Rubin BP, Lux ML, et al. (2002) Prognostic value of KIT mutation type, mitotic activity, and histologic subtype in gastrointestinal stromal tumors. J Clin Oncol 20: 3898–3905

    Article  PubMed  CAS  Google Scholar 

  13. Maeyama H, Hidaka E, Ota H, et al. (2001) Familial gastrointestinal stromal tumor with hyperpigmentation: association with a germline mutation of the c-kit gene. Gastroenterology 120: 210–5

    Article  PubMed  CAS  Google Scholar 

  14. Joensuu H, Roberts PJ, Sarlomo-Rikala M, et al. (2001) Effect of the tyrosine kinase inhibitor STI571 in a patient with a metastatic gastrointestinal stromal tumor. N Engl J Med 344: 1052–6

    Article  PubMed  CAS  Google Scholar 

  15. Nielsen H, Hansen SW, Ernst P, Rorth M (1986) Prognostic value of changes in tumor marker concentrations during treatment of patients with testicular cancer. Cancer Treat Rep 70: 1329–31

    Google Scholar 

  16. Le Cesne A, Judson I, Crowther D, et al. (2000) Randomized phase III study comparing conventional-dose doxorubicin plus ifosfamide versus high-dose doxorubicin plus ifosfamide plus recombinant human granulocyte-macrophage colony-stimulating factor in advanced soft tissue sarcomas: A trial of the European Organization for Research and Treatment of Cancer/Soft Tissue and Bone Sarcoma Group. J Clin Oncol 18: 2676–84

    PubMed  Google Scholar 

  17. Verweij J, Casali PG, Zalcberg J, et al. (2004) Progression-free survival in gastrointestinal stromal tumours with high-dose imatinib: randomised trial. Lancet 364: 1127–34

    Article  PubMed  CAS  Google Scholar 

  18. Druker BJ, Talpaz M, Resta DJ, et al. (2001) Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 344: 1031–7

    Article  PubMed  CAS  Google Scholar 

  19. von Mehren M (2003) Recent advances in the management of gastrointestinal stromal tumors. Curr Oncol Rep 5: 288–94

    Article  Google Scholar 

  20. Heinrich MC, Corless CL, Blanke CD, et al. (2006) Molecular correlates of imatinib resistance in gastrointestinal stromal tumors. J Clin Oncol 24: 4764–74

    Article  PubMed  CAS  Google Scholar 

  21. Joensuu H, Kindblom LG (2004) Gastrointestinal stromal tumors—a review. Acta Orthop Scand Suppl 75: 62–71

    Google Scholar 

  22. Choi H, Charnsangavej C, Macapinlac H, et al. (2003) Correlation of computerized tomography (CT) and proton emission tomography (PET) in patients with metastatic GIST treated at a single institution with imatinib mesylate. J Clin Oncol 22: 20–3. Ref Type: Abstract

    Google Scholar 

  23. Demetri GD, von Mehren M, Blanke CD et al. (2002) Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N Engl J Med 347: 472–80

    Article  PubMed  CAS  Google Scholar 

  24. Demetri GD (2002) Targeting the molecular pathophysiology of gastrointestinal stromal tumors with imatinib. Mechanisms, successes, and challenges to rational drug development. Hematol Oncol Clin North Am 16: 1115–24

    Article  PubMed  Google Scholar 

  25. Zalcberg JR, Verweij J, Casali PG, et al. (2005) Outcome of patients with advanced gastro-intestinal stromal tumours crossing over to a daily imatinib dose of 800 mg after progression on 400 mg. Eur J Cancer 41: 1751–7

    Article  PubMed  CAS  Google Scholar 

  26. Antonescu CR, Besmer P, Guo T, et al. (2005) Acquired resistance to imatinib in gastrointestinal stromal tumor occurs through secondary gene mutation. Clin Cancer Res 11: 4182–90

    Article  PubMed  CAS  Google Scholar 

  27. Demetri GD, Van Oosterom AT, Garrett CR, et al. (2006) Efficacy and safety of sunitinib in patients with advanced gastrointestinal stromal tumour after failure of imatinib: a randomised controlled trial. Lancet 368: 1329–38

    Article  PubMed  CAS  Google Scholar 

  28. Maki RG (2004) Gastrointestinal Stromal Tumors Respond to Tyrosine Kinase-targeted Therapy. Curr Treat Options Gastroenterol 7: 13–7

    Article  PubMed  Google Scholar 

  29. Betsholtz C, Karlsson L, Lindahl P (2001) Developmental roles of platelet-derived growth factors. Bioessays 23: 494–507

    Article  PubMed  CAS  Google Scholar 

  30. Reinmuth N, Liu W, Jung YD, et al. (2001) Induction of VEGF in perivascular cells defines a potential paracrine mechanism for endothelial cell survival. FASEB J 15: 1239–41

    PubMed  CAS  Google Scholar 

  31. Kitadai Y, Ellis LM, Tucker SL, et al. (1996) Multiparametric in situ mRNA hybridization analysis to predict disease recurrence in patients with colon carcinoma. Am J Pathol 149: 1541–51

    PubMed  CAS  Google Scholar 

  32. Weisberg E, Manley PW, Breitenstein W, et al. (2005) Characterization of AMN107, a selective inhibitor of native and mutant Bcr-Abl. Cancer Cell 7: 129–41

    Article  PubMed  CAS  Google Scholar 

  33. Le Coutre P, Baskaynak G, Tamm I, et al. (2004) Activity and Induction of Apoptosis of the Specific Tyrosine Kinase Inhibitor AMN 107 in bcr-abl+Cell Lines and in Imatinib Resistant Primary Cells from CML Patients. ASH Annual Meeting Abstracts 104: 762

    Google Scholar 

  34. Shah NP, Tran C, Lee FY, Chen P (2004) Overriding Imatinib Resistance with a Novel ABL Kinase Inhibitor. Science 305: 399–401

    Article  PubMed  CAS  Google Scholar 

  35. Kantarjian H, Giles F, Wunderle L, et al. (2006) Nilotinib in Imatinib-Resistant CML and Philadelphia Chromosome-Positive ALL. New Engl J Med 354: 2542–51

    Article  PubMed  Google Scholar 

  36. Talpaz M, Shah NP, Kantarjian H, et al. (2006) Dasatinib in Imatinib-Resistant Philadelphia Chromosome-Positive Leukemias. The New England Journal of Medicine; 354: 2531–41

    Article  PubMed  CAS  Google Scholar 

  37. Hidalgo M, Rowinsky EK (2000) The rapamycin-sensitive signal transduction pathway as a target for cancer therapy. Oncogene 19: 6680–6

    Article  PubMed  CAS  Google Scholar 

  38. Fingar DC, Blenis J (2004) Target of rapamycin (TOR): an integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression. Oncogene; 23: 3151–71

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag France

About this chapter

Cite this chapter

Ray-Coquard, I., Bachelot, T., Guastalla, J.P., Blay, J.Y. (2008). Les autres inhibiteurs tyrosine kinase de KIT ou de la voie AKT. In: Les thérapies ciblées. Oncologie pratique. Springer, Paris. https://doi.org/10.1007/978-2-287-36008-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-2-287-36008-4_8

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-287-36007-7

  • Online ISBN: 978-2-287-36008-4

Publish with us

Policies and ethics