Skip to main content

Les multiples emplois ďimatinib dans les tumeurs solides

  • Chapter
Les thérapies ciblées

Part of the book series: Oncologie pratique ((ONCOLPRAT))

  • 386 Accesses

Abstrait

Ľimatinib mésylate (STI-571) est un inhibiteur sélectif des tyrosines kinases KIT, Platelet-Derived Growth Factor Receptors (PDGFRs), BCR-ABL, ABL, c-FMS et ARG (1). Ľimatinib est une petite molécule orale qui agit par inhibition compétitive avec le site de fixation de ľATP dans la kinase, inhibant de ce fait ľactivité de la kinase et bloquant ľactivation des voies de la transduction du signal impliquées notamment dans la prolifération cellulaire et ľapoptose (2). Synthétisé en 1993, ľimatinib a ďabord été développé dans la leucémie myéloïde chronique (LMC), caractérisée par une translocation spécifique dont le gène de fusion BCR-ABL produit une protéine à activité tyrosine kinase responsable de cette leucémie. Ľefficacité remarquable de ľimatinib dans toutes les phases de la LMC, constituant une véritable révolution dans le traitement de cette maladie, a rapidement fait envisager son utilisation dans ďautres tumeurs présentant une protéine à activité tyrosine-kinase anormalement exprimée. Cependant, les tyrosines kinases cibles ďimatinib peuvent être présentes dans les cellules tumorales dans deux situations différentes. Lorsque ľanomalie moléculaire causale intervient précocement ou de façon causale dans le processus ďoncogenèse (BCR-ABL pour les LMC par exemple), ľimatinib semble actif pour le traitement de ces affections où la kinase activée est au centre du processus de transformation. En revanche, ľefficacité ďimatinib est plus hypothétique si les kinases sont exprimées plus tardivement dans le processus de transformation (KIT dans les cancers du poumon à petites cellules par exemple).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. Okuda K, Weisberg E, Gilliland DG, Griffin JD (2001) ARG tyrosine kinase activity is inhibited by STI571. Blood 97: 2440–8

    Article  PubMed  CAS  Google Scholar 

  2. Savage DG, Antman KH (2002) Imatinib mesylate: a new oral targeted therapy. NEJM 346: 683–93

    Article  PubMed  CAS  Google Scholar 

  3. Koon HB, Bubley GJ, Pantanowitz L, et al. (2005) Imatinib-induced regression of AIDS-related Kaposi’s sarcoma. J Clin Oncol 23: 982–9

    Article  PubMed  CAS  Google Scholar 

  4. Zitvogel L, Ghiringhelli F, Terme M, et al. (2006) A novel mode of Antitumor Activity For Imatinib Mesylate: consequences for the design of surrogate markers of efficacy and combination therapies. Pro Annual Meeting Proceedings, Abstr 2516

    Google Scholar 

  5. Eisenberg BL (2003) Imatinib mesylate: a molecularly targeted therapy for gastrointestinal stromal tumors. Oncology 11: 1–6

    Google Scholar 

  6. Duensing A, Heinrich MC, Fletcher CD, Fletcher JA (2004) Biology of gastrointestinal stromal tumors: KIT mutations and beyond. Cancer Invest 22: 106–16

    Article  PubMed  CAS  Google Scholar 

  7. Corless CL, Fletcher CA, Heinrich MC (2005) Biology of gastrointestinal stromal tumors. J Clin Oncol 22: 3813–25

    Article  CAS  Google Scholar 

  8. Medeiros F, Corless CL, Duensing A, et al. (2004) Kit-negative gastrointestinal stromal tumors: proof of concept and therapeutic implications. Am J Surg Pathol 28: 889–94

    Article  PubMed  Google Scholar 

  9. Joensuu H (2006) Current perspectiveson the epidemiology of gastrointestinal stromal tumors. Eur J Cancer 4 (Supl. 1): s4–9

    Google Scholar 

  10. Tryggvason G, Gislason HG, Magnusson MK, Jonasson JG (2005) Gastrointestinal stromal tumors in Iceland, 1990–2003.: the Icelandic GIST study, a population based incidence and pathologic risk stratification study. Int J Cancer 117: 289–93

    Article  PubMed  CAS  Google Scholar 

  11. Goettsch WG, Bos SD, Breekveldt-Postma N, et al. (2005) Incidence of gastrointestinal stromal tumors is underestimated: results of a nation-wide study. Eur J Cancer 41: 2868–72

    Article  PubMed  Google Scholar 

  12. Nilsson B, Bümming P, Meis-Kindblom JM, et al. (2005) Gastrointestinal stromal tumors: the incidence, prevalence, clinical course, and prognostication in the preimatinib mesylate era: a population-based study in western country. Cancer 103: 821–9

    Article  PubMed  Google Scholar 

  13. Miettinen M, Majidi M, Lasota J (2002) Pathology and diagnostic criteria of gastrointestinal stromal tumors (GISTs): review. Eur J Cancer 38: s39–51

    Article  Google Scholar 

  14. Bonvalot S, Edweny H, Le Péchoux C, et al. (2006) Impact of surgery on advanced gastrointestinal stromal tumors (GIST) in the imatinib era. Ann Surg Oncol 1: 1596–603

    Article  Google Scholar 

  15. Blay JY, Bonvalot S, Casali P, et al. (2005) Consensus meeting for the management of gastrointestinal stromal tumors. Report of the GIST Consensus Conference of 20–21 March 2004, under the auspices of ESMO. Ann Oncol 16: 566–78

    Article  PubMed  Google Scholar 

  16. Aparicio T, Boige V, Sabourin J.-C., et al. (2004) Prognostic factors after surgery of primary resectable gastrointestinal stromal tumours. Eur J Surg Oncol 30: 1098–103

    Article  PubMed  CAS  Google Scholar 

  17. DeMatteo RP, Heinrich MC, El-Rifai WM, et al. (2002) Clinical management of gastrointestinal stromal tumors: before and after the STI-571. Human Pathol 33: 455–77

    Article  Google Scholar 

  18. Heinrich MC, Griffith DJ, Druker BJ, et al. (2000) Inhibition of c-kit receptor tyrosine kinase activity by STI 571, a selective tyrosine kinase inhibitor. Blood 96: 925–32

    PubMed  CAS  Google Scholar 

  19. Joensuu H, Roberts PJ, Sarlomo-Rikala M, et al. (2001) Effect of the tyrosine kinase inhibitor STI571 in a patient with a metastatic gastrointestinal stromal tumor. N Engl J Med 344: 1052–6

    Article  PubMed  CAS  Google Scholar 

  20. Van Oosterom A, Judson I, Verweij J, et al. (2001) Safety and efficacy of imatinib (STI571) in metastatic gastrointestinal stromal tumors: a phase I. Lancet 1421–3

    Google Scholar 

  21. Demetri GD, von Mehren M, Blanke CD, et al. (2002) Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N Engl J Medicine 347: 472–80

    Article  CAS  Google Scholar 

  22. Verweij J, van Oosterom A, Blay JY, et al. (2003) Imatinib mesylate (STI 571 Glivec®, Gleevec) is an active agent for gastrointestinal stromal tumors, but does not yield responses in other soft-tissue sarcomas that are unselected for a molecular target. Results from an EORTC Soft Tissue and Bone Sarcoma Group Phase II study. Eur J Cancer 39: 2006–11

    Article  PubMed  CAS  Google Scholar 

  23. Demetri G, Rankin C, Fletcher C, et al. (2002) Phase III dose-randomized study of imatinib mesylate (Gleevec, STI571) for GIST: intergroup S0033 early results. ASCO 2002 Annual Meeting Proceedings Abstr 1651

    Google Scholar 

  24. Verweij I, Casali PG, Zalcberg J, et al. (2004) Progression free survival in gastrointestinal stromal tumours with high-dose imatinib: randomised trial. Lancet 364: 1127–34

    Article  PubMed  CAS  Google Scholar 

  25. Blanke CD, Joensuu H Demetri G, et al. (2006) Outcome of advanced gastrointestinal stromal tumors (GIST) patients treated with imatinib mesylate: four-year follow up of a phase II randomized trial. American Society for Clinical Oncology, Gastrointestinal Cancers Symposium. San Francisco; January 26–28. Abstract 7

    Google Scholar 

  26. Heinrich MC, Corless CL, Demetri GD, et al. (2003) Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumors. J Clin Oncol 21: 4342–9

    Article  PubMed  CAS  Google Scholar 

  27. Heinrich MC, Shoemaker JS, Corless CL, et al. (2005) Correlation of target kinase genotype with clinical activity of imatinib mesylate (IM) in patients with metastatic GI stromal tumors expressing KIT (KIT+). Proc Am Soc Clin Oncol 23; Abstr 7

    Google Scholar 

  28. Debiec-Richter M, Dumez H, Judson I, et al. (2004) Use of c-KIT/PDGFRA mutational analysis to predict the clinical response to imatinib in patients with advanced gastrointestinal stromal tumours entered on phase I and II studies of the EORTC Soft Tissue and Bone Sarcoma Group. Eur J Cancer 40: 689–95

    Article  CAS  Google Scholar 

  29. Antonescu CR, Besner P, Guo T, et al. (2005) Acquired resistance to imatinib in gastrointestinal stromal tumors occurs through secondary mutations. Clin Cancer Res 11: 4182–90.

    Article  PubMed  CAS  Google Scholar 

  30. Debiec-Richter M, Cools J, Dumez H, et al. (2005) Mechanisms of resistance to imatinib mesylate in gastrointestinal stromal tumor and activity of PKC 412 inhibitor against imatinib-resistant mutant. Gastroenterology 128: 270–9

    Article  CAS  Google Scholar 

  31. Judson I, Ma P, Peng B, et al. (2005) Imatinib pharmacokinetics in patients with gastrointestinal stromal tumors: a retrospective population pharmacokinetic study over time. EORTC Soft Tissue and Bone Sarcoma Group. Cancer Chemother Pharmacol 55: 379–86

    Article  PubMed  CAS  Google Scholar 

  32. Rutkowski P, Nowecki Z, Nychowski P, et al. (2005) Surgical treatment of patients (pts) with gastrointestinal stromal tumors (GIST) after imatinib mesylate (IM) therapy. Proc Am Soc Clin Oncol 23, Abstr 9037

    Google Scholar 

  33. Gronchi A, Fiore M, Bertulli R, et al. (2005) Surgery of resudual disease following Imatinib mesylate in advanced gastrointestinal stromal tumors (GIST). Proc Am Soc Oncol 23, Abstr 9038

    Google Scholar 

  34. Scaife CL, Hunt KK, Patel SR, et al. (2003) is there a role for surgery in patients with “unresectable” gastrointestinal stromal tumors treated with imatinib mesylate? Am J Surg 186: 665–9

    Article  PubMed  Google Scholar 

  35. Bauer S, Harman JT, de Wit M, et al. (2005) Resection of residual disease in patients with metastatic gastrointestinal stromal tumors responding to treatment with imatinib. Int J Cancer 117: 316–25

    Article  PubMed  CAS  Google Scholar 

  36. Desai J, Shnakar S, Heinrich MC, et al. (2004) Clonal evolution of resistance to imatinib (IM) in patients (pts) with gastrointestinal stromal tumor (GIST): molecular and radiologic evaluation of new lesions. Proc Am Soc Clin Oncol 22: Abstr 3010

    Google Scholar 

  37. Dileo P, Randhawa R, Vansonnenberg E, et al. (2004) Safety and efficacy of percutaneous radio-frequency ablation (RFA) in patients (pts) with metastatic gastrointestinal stromal tumor (GIST) with clonal evolution of lesions refractory to imatinib mesylate (IM). Proc Am Soc Clin Oncol 22, Abstr 9024

    Google Scholar 

  38. Went PT, Dirnhofer S, Bundi M, et al. (2004) Prevalence of kit expression in human tumors. J Clin Oncol 22: 4514–22

    Article  PubMed  CAS  Google Scholar 

  39. Kemmer K, Corless CL, Fletcher JA, et al. (2004) KIT mutations are common in testicular seminomas. Am J Pathol 164: 305–13

    PubMed  CAS  Google Scholar 

  40. Sihto H, Sarlomo-Rikala M, Tynninen O, et al. (2005) KIT and platelet-derived growth factor receptor alpha tyrosine kinase gene mutations and KIT amplification in human solid tumors. J Clin Oncol 23: 49–57

    Article  PubMed  CAS  Google Scholar 

  41. Apperley J (2002) A rationally designed, targeted tumor treatment approach: a phase II study of imatinib mesylate (Gleevec) in patients with life threatening diseases known to be associated with imatinib-sensitive tyrosine kinases. ASCO Annual Meeting Proceedings Abstr 7

    Google Scholar 

  42. Mace J, Sybil BJ, Sondak V, et al. (2002) Response of extrabdominal desmoid tumors to therapy with imatinib mesylate. Cancer 95: 2373–9

    Article  PubMed  CAS  Google Scholar 

  43. Heinrich MC, McArthur GA, Demetri GD, et al. (2006) Clinical and Molecular Studies of the Effect of Imatinib on Advanced Aggressive Fibromatosis (desmoid tumor) J Clin Oncol 7: 1195–02

    Article  CAS  Google Scholar 

  44. Chugh R, Maki RG, Thomas DG, et al. (2006) A SARC phase II multicentric trial of imatinib mesylate (IM) in patients with aggressive fibromatosis. Proc Am Soc Clin Oncol 24 Abstr 9515

    Google Scholar 

  45. Penel N, Le Cesne A, Bui B, et al. (2006) Imatinib for the treatment of aggressive fibromatosis (desmoid tumors) failing local treatment. A phase II trial of the French Sarcoma Group. Proc Am Soc Clin Oncol 24 Abstr 9516

    Google Scholar 

  46. Simon MP, Pedeutour F, Sirvent N, et al. (1997) Deregulation of the platelet-derived growth factor B-chain via fusion with collagen gene COL1A1 in dermatofibrosarcoma protuberans and giant cell fibroblastoma. Nat Genet 15: 95–8

    Article  PubMed  CAS  Google Scholar 

  47. Rubin BP, Schuetze SM, Eary JF, et al. (2002) Molecular targeting of platelet-derived growth factor B by imatinib mesylate in a patient with metastatic dermatofibrosacoma protuberans. J Clin Oncol 20: 3586–91

    Article  PubMed  CAS  Google Scholar 

  48. Maki RG, Awan RA, Dixon RH, et al. (2002) Differential sensitivity to imatinib of 2 patients with metastatic sarcoma arising from Dermatofibrosarcoma protuberans. Int J Cancer 1000: 623–6

    Article  CAS  Google Scholar 

  49. Labropoulos S, Papadopoulos S, Hadjiyissemi L, et al. (2003) Response of metastatic Dermatofibrosarcoma protuberans to imatinib mesylate. Proc Am Soc Clin Oncol 830: Abstr 3334

    Google Scholar 

  50. Mizutani K, Tamada Y, Hara K, et al. (2004) Imatinib mesylate inhibits the growth of metastatic lung lesions in a patient with Dermatofibrosarcoma protuberans. Br J Dermatol 151: 235–37

    Article  PubMed  CAS  Google Scholar 

  51. McArthur GA, Demetri GD, van Oosterom A, et al. (2005) Molecular and clinical analysis of locally advanced Dermatofibrosarcoma protuberans treated with imatinib: Imatinib Target Exploration Consortium Study B2225 J Clin Oncol 23: 866–73

    Article  PubMed  CAS  Google Scholar 

  52. Kerob D, Porcher R, Vérola O, et al. Essai de phase IIA de traitement néoadjuvant par Glivec® (imatinib mésylate) dans les dermatofibrosarcomes de Dairer-Ferrand. (2006) Ann Dermatol Venerol 133: 4S1–4S69

    Google Scholar 

  53. Sturzl M, Roth WK, Brockmeyer NH, et al. (1992) Expression of platelet derived growth factor and its receptor in AIDS-related Kaposi sarcoma in vivo suggests paracrine and autocrine mechanims of tumor maintenance. Proc Natl Acad Sci USA 89: 7046–50

    Article  PubMed  CAS  Google Scholar 

  54. Cornali E, Zietz C, Benelli R, et al. (1996) Vascular endothelial growth factor regulates angiogenesis and vascular permeability in Kaposis sarcoma. Am J Pathol 149: 1851–69

    PubMed  CAS  Google Scholar 

  55. Lokker NA, Sullivan CM, Hollenbach SJ, et al. (2002) Platelet-derived growth factor (PDGF) autocrine signaling regulates survival and mitogenic pathways in glioblastoma cells: evidence that the novel PDGF-C and PDGF-D ligands may play a role in the development of brain tumors. Cancer Res 62: 3729–35

    PubMed  CAS  Google Scholar 

  56. Raymond E, Brandes A, van Oostrom A, et al. (2004) Multicentre Phase II study of imatinib mesylate in patients with recurrent glioblastoma: an EORTC NDDP/BTG intergroup study. Proc Am Soc Clin Oncol 22: Abstr 1501

    Google Scholar 

  57. Reardon DA, Egorin MJ, Quinn JA, et al. (2005) Phase II study of imatinib plus hydroxyurea in adults with recurrent glioblastoma multiforme. J Clin Oncol 23: 9359–68

    Article  PubMed  CAS  Google Scholar 

  58. Dresemann G (2005) Imatinib and hydroxyurea in pretreated progressive glioblastoma multiforma: a patient series. Ann Oncol 16: 1702–8

    Article  PubMed  CAS  Google Scholar 

  59. Ko YJ, Small EJ, Kabbinivar F, et al. (2001) A multi-institutional phase II of SU101, a platelet-derived growth factor receptor inhibitor, for patients with hormone refractory prostate cancer. Clin cancer Res 7: 800–5

    PubMed  CAS  Google Scholar 

  60. Uehara H, Kim SJ, Karashima T, et al. (2003) Effects of blocking platelet-derived growth factor-receptor signalling in a mouse model of experimental prostate cancer bone metastases. J Natl Cancer Inst 95: 458–70

    Article  PubMed  CAS  Google Scholar 

  61. Mathew P, Thall PF, Jones D, et al. (2004) Platelet-derived growth factor receptor inhibitor imatinib mesylate and docetaxel: a modular phase I trial in androgen-independent prostate cancer. J Clin Oncol 22: 3323–9

    Article  PubMed  CAS  Google Scholar 

  62. Airoldi M, Fornari G, Pedani F, et al. (2000) Paclitaxel and carboplatin for recurrent salivary gland malignancies. Anticancer Res 20: 3781–4

    PubMed  CAS  Google Scholar 

  63. Freier K, Fletchtenmacher C, Walch A, et al. (2005) Differential KIT expression in histological subtypes of adenoid cystic carcinoma (ACC) of the salivary gland. Oral Oncol 23: 934–9

    Article  CAS  Google Scholar 

  64. Hotte SJ, Winquist EW, Lamont E, et al. (2005) Imatinib mesylate in patients with adenoid cystic cancers of the salivary glands expressing c-kit: a Princess Margaret Hospital phase II consortium study. J Clin Oncol 23: 585–90

    Article  PubMed  CAS  Google Scholar 

  65. Faivre S, Raymond E, Casiraghi O, et al. (2005) Imatinib mesylate can induce objective response in progressing, highly expressing KIT adenoid cystic carcinoma of the salivary glands J Clin Oncol 23: 6271–3

    Article  PubMed  Google Scholar 

  66. Blay JY, El Sayadi H, Thiesse P et al. (2002) complete reponse to imatinib in relapsing PVNS/JGCT. An Oncol (in presse)

    Google Scholar 

  67. Wyman K, Atkins MB, Pristo V, et al. (2006) Multicenter phase II trial of high-dose imatinib mesylate in metastatic melanoma: significant tosicity with no clinical activity. Cancer 106: 2005–11

    Article  PubMed  CAS  Google Scholar 

  68. Vuky J, Isacson C, Fotoohi M, et al. (2006) Phase II trial of imatinib (Gleevc) in patients with metastatic renal cell carcinoma. Invest New Drugs 24: 85–8

    Article  PubMed  CAS  Google Scholar 

  69. Krug LM, Crapanzono JP, Azzoli CG (2005) Imatinib mesylate lacks activity in small cell lung carcinoma expressing c-KIT protein: a phase II clinical trial. Cancer 103: 2128–31

    Article  PubMed  CAS  Google Scholar 

  70. Dy GK, Miller AA, Mandrekar SJ, et al. (2005) A phase II trial of imatinib (STI571) in patients with c-KIT expressing relapsed small-cell lung cancer: a CALGB and NCCTG study. Ann Oncol 16: 1811–16

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag France

About this chapter

Cite this chapter

Duffaud, F., Le Cesne, A. (2008). Les multiples emplois ďimatinib dans les tumeurs solides. In: Les thérapies ciblées. Oncologie pratique. Springer, Paris. https://doi.org/10.1007/978-2-287-36008-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-2-287-36008-4_7

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-287-36007-7

  • Online ISBN: 978-2-287-36008-4

Publish with us

Policies and ethics