Skip to main content

Monoclonaux contre inhibiteurs de tyrosine kinase

  • Chapter
Les thérapies ciblées

Part of the book series: Oncologie pratique ((ONCOLPRAT))

  • 379 Accesses

Abstrait

Les thérapeutiques ciblées en cancérologie font actuellement principalement appel à deux grandes catégories de molécules, les anticorps monoclonaux (Mabs) et les inhibiteurs de tyrosine kinase (TKIs) (1). Dans ce domaine, le ciblage du récepteur au facteur de croissance épidermique (REGF) représente, parmi les avancées récentes, une des plus prometteuses sur le plan clinique (26). Ceci n’a rien ďétonnant quand on connaît le rôle clé, tenu par le REGF, dans les processus de transduction du signal régulant des fonctions cellulaires majeures telles que la survie et la prolifération. Parmi les produits ciblant le REGF, le cétuximab (Erbitux®) (7, 8) et le panitumumab (Vectibix®) pour les Mabs, le gefitinib (Iressa®) (9, 10) et ľerlotinib (Tarceva®) (11, 12) pour les TKIs, font partie des agents les mieux connus et les plus avancés dans leur développement clinique. Il devient ainsi indispensable de mieux comprendre les points communs et les différences concernant les propriétés pharmacologiques de ces deux grandes catégories de molécules. Si certains éléments sont actuellement parfaitement connus, de nombreuses questions subsistent autour du mode ďaction et des conséquences pharmacologiques du ciblage du REGF par ces agents. Notre but ici est donc de comparer, tant sur le plan moléculaire que sur le plan clinique, ľaction pharmacologique des Mabs et des TKIs dans ce domaine du ciblage du REGF.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. Modi S, Seidman AD (2002) An update on epidermal growth factor receptor inhibitors. Curr Oncol Rep 4: 47–55

    Article  PubMed  Google Scholar 

  2. Yarden Y (2001) The EGFR family and its ligands in human cancer. signalling mechanisms and therapeutic opportunities. Eur J Cancer 37 Suppl 4: S3–8

    Article  Google Scholar 

  3. Arteaga CL (2001) The epidermal growth factor receptor: from mutant oncogene in nonhuman cancers to therapeutic target in human neoplasia. J Clin Oncol 19: 32S–40S

    PubMed  CAS  Google Scholar 

  4. Ciardiello F, Tortora G (2001) A novel approach in the treatment of cancer: targeting the epidermal growth factor receptor. Clin Cancer Res 7: 2958–70

    PubMed  CAS  Google Scholar 

  5. Baselga J (2001) Targeting the epidermal growth factor receptor: a clinical reality. J Clin Oncol 19: 41S–44S

    PubMed  CAS  Google Scholar 

  6. Mendelsohn J (2002) Targeting the epidermal growth factor receptor for cancer therapy. J Clin Oncol 20: 1S–13S

    PubMed  CAS  Google Scholar 

  7. Herbst RS, Kim ES, Harari PM (2001) IMC-C225, an anti-epidermal growth factor receptor monoclonal antibody, for treatment of head and neck cancer. Expert Opin Biol Ther 1: 719–32

    Article  PubMed  CAS  Google Scholar 

  8. Baselga J (2001) The EGFR as a target for anticancer therapy—focus on cetuximab. Eur J Cancer 37 Suppl 4: S16–22

    Article  Google Scholar 

  9. Ranson M, Mansoor W, Jayson G (2002) ZD1839 (IRESSA): a selective EGFR-TK inhibitor. Expert Rev Anticancer Ther 2: 161–8

    Article  PubMed  CAS  Google Scholar 

  10. Fukuoka M, Yano S, Giaccone G, et al. (2003) Multi-institutional randomized phase II trial of gefitinib for previously treated patients with advanced non-small-cell lung cancer (The IDEAL 1 Trial) [corrected]. J Clin Oncol 21: 2237–46

    Article  PubMed  CAS  Google Scholar 

  11. Bonomi P (2003) Erlotinib: a new therapeutic approach for non-small cell lung cancer. Expert Opin Investig Drugs 12: 1395–1401

    Article  PubMed  CAS  Google Scholar 

  12. Herbst RS (2003) Erlotinib (Tarceva): an update on the clinical trial program. Semin Oncol 30: 34–46

    PubMed  CAS  Google Scholar 

  13. Bianco R, Melisi D, Ciardiello F, Tortora G (2006) Key cancer cell signal transduction pathways as therapeutic targets. Eur J Cancer 42: 290–4

    Article  PubMed  CAS  Google Scholar 

  14. Fan Z, Lu Y, Wu X, Mendelsohn J (1994) Antibody-induced epidermal growth factor receptor dimerization mediates inhibition of autocrine proliferation of A431 squamous carcinoma cells. J Biol Chem 269: 27595–602

    PubMed  CAS  Google Scholar 

  15. Prewett M, Rockwell P, Rockwell RF, et al. (1996) The biologic effects of C225, a chimeric monoclonal antibody to the EGFR, on human prostate carcinoma. J Immunother Emphasis Tumor Immunol 19: 419–27

    PubMed  CAS  Google Scholar 

  16. Noonberg SB, Benz CC (2000) Tyrosine kinase inhibitors targeted to the epidermal growth factor receptor subfamily: role as anticancer agents. Drugs 59: 753–67

    Article  PubMed  CAS  Google Scholar 

  17. Denny WA (2002) Irreversible inhibitors of the erbB family of protein tyrosine kinases. Pharmacol Ther 93: 253–61

    Article  PubMed  CAS  Google Scholar 

  18. Citri A, Alroy I, Lavi S, et al. (2002) Drug-induced ubiquitylation and degradation of ErbB receptor tyrosine kinases: implications for cancer therapy. Embo J 21: 2407–17

    Article  PubMed  CAS  Google Scholar 

  19. Wakeling AE, Guy SP, Woodburn JR, et al. (2002) ZD1839 (Iressa): an orally active inhibitor of epidermal growth factor signaling with potential for cancer therapy. Cancer Res 62: 5749–54

    PubMed  CAS  Google Scholar 

  20. Liu B, Fang M, Lu Y, et al. (2001) Fibroblast growth factor and insulin-like growth factor differentially modulate the apoptosis and G1 arrest induced by anti-epidermal growth factor receptor monoclonal antibody. Oncogene 20: 1913–22

    Article  PubMed  CAS  Google Scholar 

  21. Kiyota A, Shintani S, Mihara M, et al. (2002) Anti-epidermal growth factor receptor monoclonal antibody 225 upregulates p27 (KIP1) and p15(INK4B) and induces G1 arrest in oral squamous carcinoma cell lines. Oncology 63: 92–8

    Article  PubMed  CAS  Google Scholar 

  22. Fan Z, Shang BY, Lu Y, et al. (1997) Reciprocal changes in p27(Kip1) and p21 (Cip1) in growth inhibition mediated by blockade or overstimulation of epidermal growth factor receptors. Clin Cancer Res 3: 1943–8

    PubMed  CAS  Google Scholar 

  23. Huang SM, Li J, Armstrong EA, Harari PM (2002) Modulation of radiation response and tumor-induced angiogenesis after epidermal growth factor receptor inhibition by ZD1839 (Iressa). Cancer Res 62: 4300–6

    PubMed  CAS  Google Scholar 

  24. Huang SM, Bock JM, Harari PM (1999) Epidermal growth factor receptor blockade with C225 modulates proliferation, apoptosis, and radiosensitivity in squamous cell carcinomas of the head and neck. Cancer Res 59: 1935–40

    PubMed  CAS  Google Scholar 

  25. Ciardiello F, Bianco R, Damiano V, et al. (2000) Antiangiogenic and antitumor activity of anti-epidermal growth factor receptor C225 monoclonal antibody in combination with vascular endothelial growth factor antisense oligonucleotide in human GEO colon cancer cells. Clin Cancer Res 6: 3739–47

    PubMed  CAS  Google Scholar 

  26. Liu B, Fang M, Schmidt M, et al. (2000) Induction of apoptosis and activation of the caspase cascade by anti-EGF receptor monoclonal antibodies in DiFi human colon cancer cells do not involve the c-jun N-terminal kinase activity. Br J Cancer 82: 1991–9

    Article  PubMed  CAS  Google Scholar 

  27. Liu B, Fan Z (2001) The monoclonal antibody 225 activates caspase-8 and induces apoptosis through a tumor necrosis factor receptor family-independent pathway. Oncogene 20: 3726–34

    Article  PubMed  CAS  Google Scholar 

  28. Huang SM, Harari PM (2000) Modulation of radiation response after epidermal growth factor receptor blockade in squamous cell carcinomas: inhibition of damage repair, cell cycle kinetics, and tumor angiogenesis. Clin Cancer Res 6: 2166–74

    PubMed  CAS  Google Scholar 

  29. Tortora G, Caputo R, Damiano V, et al. (2001) Oral administration of a novel taxane, an antisense oligonucleotide targeting protein kinase A, and the epidermal growth factor receptor inhibitor Iressa causes cooperative antitumor and antiangiogenic activity. Clin Cancer Res 7: 4156–63

    PubMed  CAS  Google Scholar 

  30. Hirata A, Ogawa S, Kometani T, et al. (2002) ZD1839 (Iressa) induces antiangiogenic effects through inhibition of epidermal growth factor receptor tyrosine kinase. Cancer Res 62: 2554–60

    PubMed  CAS  Google Scholar 

  31. Bozec A, Formento P, Ciccolini J, et al. (2005) Response of endothelial cells to a dual tyrosine kinase receptor inhibition combined with irradiation. Mol Cancer Ther 4: 1962–71

    Article  PubMed  CAS  Google Scholar 

  32. Bandyopadhyay D, Mandal M, Adam L, et al. (1998) Physical interaction between epidermal growth factor receptor and DNA-dependent protein kinase in mammalian cells. J Biol Chem 273: 1568–73

    Article  PubMed  CAS  Google Scholar 

  33. Yacoub A, McKinstry R, Hinman D, et al. (2003) Epidermal growth factor and ionizing radiation up-regulate the DNA repair genes XRCC1 and ERCC1 in DU145 and LNCaP prostate carcinoma through MAPK signaling. Radiat Res 159: 439–52

    Article  PubMed  CAS  Google Scholar 

  34. Normanno N, Tortora G, De Luca A, et al. (1999) Synergistic growth inhibition and induction of apoptosis by a novel mixed backbone antisense oligonucleotide targeting CRIPTO in combination with C225 anti-EGFR monoclonal antibody and 8-Cl-cAMP in human GEO colon cancer cells. Oncol Rep 6: 1105–9

    PubMed  CAS  Google Scholar 

  35. Overholser JP, Prewett MC, Hooper AT, et al. (2000) Epidermal growth factor receptor blockade by antibody IMC-C225 inhibits growth of a human pancreatic carcinoma xenograft in nude mice. Cancer 89: 74–82

    Article  PubMed  CAS  Google Scholar 

  36. Bos M, Mendelsohn J, Kim YM, et al. (1997) PD153035, a tyrosine kinase inhibitor, prevents epidermal growth factor receptor activation and inhibits growth of cancer cells in a receptor number-dependent manner. Clin Cancer Res 3: 2099–106

    PubMed  CAS  Google Scholar 

  37. Goldstein NI, Prewett M, Zuklys K, et al. (1995) Biological efficacy of a chimeric antibody to the epidermal growth factor receptor in a human tumor xenograft model. Clin Cancer Res 1: 1311–8

    PubMed  CAS  Google Scholar 

  38. Ciardiello F, Caputo R, Bianco R, et al. (2000) Antitumor effect and potentiation of cytotoxic drugs activity in human cancer cells by ZD-1839 (Iressa), an epidermal growth factor receptor-selective tyrosine kinase inhibitor. Clin Cancer Res 6: 2053–63

    PubMed  CAS  Google Scholar 

  39. Magne N, Fischel JL, Dubreuil A, et al. (2002) Sequence-dependent effects of ZD1839 (‘Iressa’) in combination with cytotoxic treatment in human head and neck cancer. Br J Cancer 86: 819–27

    Article  PubMed  CAS  Google Scholar 

  40. Milano G (2005) Pharmacological skills for targeting EGFR and VEGF. Bull Cancer 92: S17–20

    Google Scholar 

  41. Bleeker WK, Lammerts van Bueren JJ, van Ojik HH, et al. (2004) Dual mode of action of a human anti-epidermal growth factor receptor monoclonal antibody for cancer therapy. J Immunol 173: 4699–707

    PubMed  CAS  Google Scholar 

  42. Carter P (2001) Improving the efficacity of antibody-based cancer therapies. Nat Rev Cancer 2: 118–29

    Article  CAS  Google Scholar 

  43. Gieseg MA, de Bock C, Ferguson LR, Denny WA (2001) Evidence for epidermal growth factor receptor-enhanced chemosensitivity in combinations of cisplatin and the new irreversible tyrosine kinase inhibitor CI-1033. Anticancer Drugs 12: 683–90

    Article  PubMed  CAS  Google Scholar 

  44. Fan Z, Baselga J, Masui H, Mendelsohn J (1993) Antitumor effect of anti-epidermal growth factor receptor monoclonal antibodies plus cis-diamminedichloroplatinum on well established A431 cell xenografts. Cancer Res 53: 4637–42

    PubMed  CAS  Google Scholar 

  45. Ciardiello F, Bianco R, Damiano V, et al. (1999) Antitumor activity of sequential treatment with topotecan and anti-epidermal growth factor receptor monoclonal antibody C225. Clin Cancer Res 5: 909–16

    PubMed  CAS  Google Scholar 

  46. Bruns CJ, Harbison MT, Davis DW, et al. (2000) Epidermal growth factor receptor blockade with C225 plus gemcitabine results in regression of human pancreatic carcinoma growing orthotopically in nude mice by antiangiogenic mechanisms. Clin Cancer Res 6: 1936–48

    PubMed  CAS  Google Scholar 

  47. Prewett MC, Hooper AT, Bassi R, et al. (2002) Enhanced antitumor activity of anti-epidermal growth factor receptor monoclonal antibody IMC-C225 in combination with irinotecan (CPT-11) against human colorectal tumor xenografts. Clin Cancer Res 8: 994–1003

    PubMed  CAS  Google Scholar 

  48. Cunningham D, Humblet Y, Siena S, et al. (2004) Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med 351: 337–45

    Article  PubMed  CAS  Google Scholar 

  49. Folprecht G, Lutz MP, Schoffski P, et al. (2006) Cetuximab and irinotecan/5-fluorouracil/folinic acid is a safe combination for the first-line treatment of patients with epidermal growth factor receptor expressing metastatic colorectal carcinoma. Ann Oncol 17: 450–6

    Article  PubMed  CAS  Google Scholar 

  50. Bianco C, Bianco R, Tortora G, et al. (2000) Antitumor activity of combined treatment of human cancer cells with ionizing radiation and anti-epidermal growth factor receptor monoclonal antibody C225 plus type I protein kinase A antisense oligonucleotide. Clin Cancer Res 6: 4343–50

    PubMed  CAS  Google Scholar 

  51. Bonner JA, Raisch KP, Trummell HQ, et al. (2000) Enhanced apoptosis with combination C225/radiation treatment serves as the impetus for clinical investigation in head and neck cancers. J Clin Oncol 18: 47S–53S

    PubMed  CAS  Google Scholar 

  52. Bianco C, Tortora G, Bianco R, et al. (2002) Enhancement of antitumor activity of ionizing radiation by combined treatment with the selective epidermal growth factor receptor-tyrosine kinase inhibitor ZD1839 (Iressa). Clin Cancer Res 8: 3250–8

    PubMed  CAS  Google Scholar 

  53. Williams KJ, Telfer BA, Stratford IJ, Wedge SR (2002) ZD1839 (‘Iressa’), a specific oral epidermal growth factor receptor-tyrosine kinase inhibitor, potentiates radiotherapy in a human colorectal cancer xenograft model. Br J Cancer 86: 1157–61

    Article  PubMed  CAS  Google Scholar 

  54. Bozec A, Fischel JL, Milano G (2006) Epidermal growth factor receptor/angiogenesis dual targeting: preclinical experience. Curr Opin Oncol 18: 330–4

    Article  PubMed  CAS  Google Scholar 

  55. Bonner JA, Harari PM, Giralt J, et al. (2006) Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N Engl J Med 354: 567–78

    Article  PubMed  CAS  Google Scholar 

  56. Baselga J, Trigo JM, Bourhis J, et al. (2005) Phase II multicenter study of the antiepidermal growth factor receptor monoclonal antibody cetuximab in combination with platinum-based chemotherapy in patients with platinum-refractory metastatic and/or recurrent squamous cell carcinoma of the head and neck. J Clin Oncol 23: 5568–77

    Article  PubMed  CAS  Google Scholar 

  57. Bourhis J, Rivera F, Mesia R, et al. (2006) Phase I/II study of cetuximab in combination with cisplatin or carboplatin and fluorouracil in patients with recurrent or metastatic squamous cell carcinoma of the head and neck. J Clin Oncol 24: 2866–72

    Article  PubMed  CAS  Google Scholar 

  58. Herbst RS, Arquette M, Shin DM, et al. (2005) Phase II multicenter study of the epidermal growth factor receptor antibody cetuximab and cisplatin for recurrent and refractory squamous cell carcinoma of the head and neck. J Clin Oncol 23: 5578–87

    Article  PubMed  CAS  Google Scholar 

  59. Burtness B, Goldwasser MA, Flood W, et al. (2005) Phase III randomized trial of cisplatin plus placebo compared with cisplatin plus cetuximab in metastatic/recurrent head and neck cancer: an Eastern Cooperative Oncology Group study. J Clin Oncol 23: 8646–54

    Article  PubMed  Google Scholar 

  60. Magne N, Fischel JL, Dubreuil A, et al. (2002) Influence of epidermal growth factor receptor (EGFR), p53 and intrinsic MAP kinase pathway status of tumour cells on the antiproliferative effect of ZD1839 («Iressa»). Br J Cancer 86: 1518–23

    Article  PubMed  CAS  Google Scholar 

  61. Solbach C, Roller M, Ahr A, et al. (2002) Anti-epidermal growth factor receptor-antibody therapy for treatment of breast cancer. Int J Cancer 101: 390–4

    Article  PubMed  CAS  Google Scholar 

  62. Moroni M, Veronese S, Benvenuti S, et al. (2005) Gene copy number for epidermal growth factor receptor (EGFR) and clinical response to antiEGFR treatment in colorectal cancer: a cohort study. Lancet Oncol 6: 279–86

    Article  PubMed  CAS  Google Scholar 

  63. Penault-Llorca F, Bibeau F, Arnould L, et al. (2005) EGFR expression in colorectal cancer and role in tumorigenesis. Bull Cancer 92: S5–11

    Article  CAS  Google Scholar 

  64. Huang HS, Nagane M, Klingbeil CK, et al. (1997) The enhanced tumorigenic activity of a mutant epidermal growth factor receptor common in human cancers is mediated by threshold levels of constitutive tyrosine phosphorylation and unattenuated signaling. J Biol Chem 272: 2927–35

    Article  PubMed  CAS  Google Scholar 

  65. Wikstrand CJ, McLendon RE, Friedman AH, Bigner DD (1997) Cell surface localization and density of the tumor-associated variant of the epidermal growth factor receptor, EGFRvIII. Cancer Res 57: 4130–40

    PubMed  CAS  Google Scholar 

  66. Sugawa N, Ekstrand AJ, James CD, Collins VP (1990) Identical splicing of aberrant epidermal growth factor receptor transcripts from amplified rearranged genes in human glioblastomas. Proc Natl Acad Sci USA 87: 8602–6

    Article  PubMed  CAS  Google Scholar 

  67. Moscatello DK, Holgado-Madruga M, Godwin AK, et al. (1995) Frequent expression of a mutant epidermal growth factor receptor in multiple human tumors. Cancer Res 55: 5536–9

    PubMed  CAS  Google Scholar 

  68. Moscatello DK, Montgomery RB, Sundareshan P, et al. (1996) Transformational and altered signal transduction by a naturally occurring mutant EGF receptor. Oncogene 13: 85–96

    PubMed  CAS  Google Scholar 

  69. Nagane M, Coufal F, Lin H, et al. (1996) A common mutant epidermal growth factor receptor confers enhanced tumorigenicity on human glioblastoma cells by increasing proliferation and reducing apoptosis. Cancer Res 56: 5079–86

    PubMed  CAS  Google Scholar 

  70. Nishikawa R, Ji XD, Harmon RC, et al. (1994) A mutant epidermal growth factor receptor common in human glioma confers enhanced tumorigenicity. Proc Natl Acad Sci SA 91:7727–31

    Article  CAS  Google Scholar 

  71. Wikstrand CJ, Hale LP, Batra SK, et al. (1995) Monoclonal antibodies against EGFRvIII are tumor specific and react with breast and lung carcinomas and malignant gliomas. Cancer Res 55: 3140–8

    PubMed  CAS  Google Scholar 

  72. Heimberger AB, Learn CA, Archer GE, et al. (2002) Brain tumors in mice are susceptible to blockade of epidermal growth factor receptor (EGFR) with the oral, specific, EGFR-tyrosine kinase inhibitor ZD1839 (iressa). Clin Cancer Res 8: 3496–502

    PubMed  CAS  Google Scholar 

  73. Mellinghoff IK, Wang MY, Vivanco I, et al. (2005) Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N Engl J Med 353: 2012–24

    Article  PubMed  CAS  Google Scholar 

  74. Mishima K, Johns TG, Luwor RB, et al. (2001) Growth suppression of intracranial xenografted glioblastomas overexpressing mutant epidermal growth factor receptors by systemic administration of monoclonal antibody (mAb) 806, a novel monoclonal antibody directed to the receptor. Cancer Res 61: 5349–54

    PubMed  CAS  Google Scholar 

  75. Paez JG, Janne PA, Lee JC, et al. (2004) EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304: 1497–1500

    Article  PubMed  CAS  Google Scholar 

  76. Lynch TJ, Bell DW, Sordella R, et al. (2004) Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 350: 2129–39

    Article  PubMed  CAS  Google Scholar 

  77. Marchetti A, Martella C, Felicioni L, et al. (2005) EGFR mutations in non-small-cell lung cancer: analysis of a large series of cases and development of a rapid and sensitive method for diagnostic screening with potential implications on pharmacologic treatment. J Clin Oncol 23: 857–65

    Article  PubMed  CAS  Google Scholar 

  78. Sakurada A, Shepherd FA, Tsao MS (2006) Epidermal growth factor receptor tyrosine kinase inhibitors in lung cancer: impact of primary or secondary mutations. Clin Lung Cancer 7 (Suppl 4): S138–144

    Article  Google Scholar 

  79. Pao W, Miller VA, Politi KA, et al. (2005) Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med 2: e73

    Article  PubMed  CAS  Google Scholar 

  80. Pao W, Miller VA (2005) Epidermal growth factor receptor mutations, small-molecule kinase inhibitors, and non-small-cell lung cancer: current knowledge and future directions. J Clin Oncol 23: 2556–68

    Article  PubMed  CAS  Google Scholar 

  81. Pao W, Miller V, Zakowski M, et al. (2004) EGF receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci USA 101: 13306–11

    Article  PubMed  CAS  Google Scholar 

  82. Janne PA, Engelman JA, Johnson BE (2005) Epidermal growth factor receptor mutations in non-small-cell lung cancer: implications for treatment and tumor biology. J Clin Oncol 23: 3227–34

    Article  PubMed  CAS  Google Scholar 

  83. Han SW, Kim TY, Hwang PC, et al. (2005) Predictive and prognostic impact of epidermal growth factor receptor mutation in non-small-cell lung cancer patients treated with gefitinib. J Clin Oncol 23: 2493–501

    Article  PubMed  CAS  Google Scholar 

  84. Mitsudomi T, Kosaka T, Endoh H, et al. (2005) Mutations of the epidermal growth factor receptor gene predict prolonged survival after gefitinib treatment in patients with non-small-cell lung cancer with postoperative recurrence. J Clin Oncol 23: 2513–20

    Article  PubMed  CAS  Google Scholar 

  85. Mukohara T, Engelman JA, Hanna NH, et al. (2005) Differential effects of gefitinib and cetuximab on non-small-cell lung cancers bearing epidermal growth factor receptor mutations. J Natl Cancer Inst 97: 1185–94

    Article  PubMed  CAS  Google Scholar 

  86. Chakravarti A, Loeffler JS, Dyson NJ (2002) Insulin-like growth factor receptor I mediates resistance to anti-epidermal growth factor receptor therapy in primary human glioblastoma cells through continued activation of phosphoinositide 3-kinase signaling. Cancer Res 62: 200–7

    PubMed  CAS  Google Scholar 

  87. Bianco R, Shin I, Ritter CA, et al. (2003) Loss of PTEN/MMAC1/TEP in EGF receptor-expressing tumor cells counteracts the antitumor action of EGFR tyrosine kinase inhibitors. Oncogene 22: 2812–22

    Article  PubMed  CAS  Google Scholar 

  88. Christensen JG, Schreck RE, Chan E, et al. (2001) High levels of HER-2 expression alter the ability of epidermal growth factor receptor (EGFR) family tyrosine kinase inhibitors to inhibit EGFR phosphorylation in vivo. Clin Cancer Res 7: 4230–8

    PubMed  CAS  Google Scholar 

  89. Lievre A, Bachet JB, Le Corre D, et al. (2006) KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer. Cancer Res 66: 3992–5

    Article  PubMed  CAS  Google Scholar 

  90. Viloria-Petit A, Crombet T, Jothy S, et al. (2001) Acquired resistance to the antitumor effect of epidermal growth factor receptor-blocking antibodies in vivo: a role for altered tumor angiogenesis. Cancer Res 61: 5090–101

    PubMed  CAS  Google Scholar 

  91. Bozec A, Formento P, Fischel JL, et al. (2006) Combined effect of EGFR targeting with antiangiogenesis and irradiation. In Proc Am Assoc Cancer Res, Poster 232

    Google Scholar 

  92. McCarty MF, Wey J, Stoeltzing O, et al. (2004) ZD6474, a vascular endothelial growth factor receptor tyrosine kinase inhibitor with additional activity against epidermal growth factor receptor tyrosine kinase, inhibits orthotopic growth and angiogenesis of gastric cancer. Mol Cancer Ther 3: 1041–8

    PubMed  CAS  Google Scholar 

  93. Sano D, Kawakami M, Fujita K, et al. (2007) Antitumor effects of ZD6474 on head and neck squamous cell carcinoma. Oncol Rep 17: 289–295

    PubMed  CAS  Google Scholar 

  94. Gridelli C, Rossi A, Maione P (2006) New antiangiogenetic agents and non-small cell lung cancer. Crit Rev Oncol Hematol 60: 76–86

    Article  PubMed  CAS  Google Scholar 

  95. Heymach JV (2005) ZD6474—clinical experience to date. Br J Cancer 92 Suppl 1: S14–20

    Article  CAS  Google Scholar 

  96. Herbst RS, Johnson DH, Mininberg E, et al. (2005) Phase I/II trial evaluating the antivascular endothelial growth factor monoclonal antibody bevacizumab in combination with the HER-1/epidermal growth factor receptor tyrosine kinase inhibitor erlotinib for patients with recurrent non-small-cell lung cancer. J Clin Oncol 23: 2544–55

    Article  PubMed  CAS  Google Scholar 

  97. Motzer RJ, Bukowski RM (2006) Targeted therapy for metastatic renal cell carcinoma. J Clin Oncol 24: 5601–8

    Article  PubMed  CAS  Google Scholar 

  98. Milano M, Guerin O (2006) Recent advances in targeted therapies for colorectal cancer. J Oncol Pharm Pract 12: 69–73

    Article  PubMed  CAS  Google Scholar 

  99. Mauer AM, Cohen EE, Wong SJ, et al. (2004) Phase I study of epidermal growth factor receptor (EGFR) inhibitor, erlotinib, and vascular endothelial growth factor monoclonal antibody, bevacizumab, in recurrent and/or metastatic squamous cell carcinoma of the head and neck (SCCHN). In Proc Am Assoc Clin Oncol, Abst 5539

    Google Scholar 

  100. Vokes EE, Cohen EE, Mauer AM, et al. (2005) A phase I study of erlotinib and bevacizumab for recurrent or metastatic squamous cell carcinoma of the head and neck (HNC). In Proc Am Assoc Clin Oncol, Abst 5504

    Google Scholar 

  101. Bozec A, Lassalle S, Gugenheim J, et al. (2006) Enhanced tumour antiangiogenic effects when combining gefitinib with the antivascular agent ZD6126. Br J Cancer 95: 722–728

    Article  PubMed  CAS  Google Scholar 

  102. Shi W, Siemann DW (2005) Targeting the tumor vasculature: enhancing antitumor efficacy through combination treatment with ZD6126 and ZD6474. In Vivo 19: 1045–50

    PubMed  CAS  Google Scholar 

  103. Heymach JV, Nilsson M, Blumenschein G, et al. (2006) Epidermal growth factor receptor inhibitors in development for the treatment of non-small cell lung cancer. Clin Cancer Res 12: 4441s–4445s

    Article  PubMed  CAS  Google Scholar 

  104. Seiden MV, Burris HA, Matulonis U, et al. (2007) A phase II trial of EMD72000 (matuzumab), a humanized anti-EGFR monoclonal antibody, in patients with platinum-resistant ovarian and primary peritoneal malignancies. Gynecol Oncol 104: 727–31

    Article  PubMed  CAS  Google Scholar 

  105. Nelson MH, Dolder CR (2006) Lapatinib: a novel dual tyrosine kinase inhibitor with activity in solid tumors. Ann Pharmacother, 40: 261–9

    Article  PubMed  CAS  Google Scholar 

  106. Christensen JG, Vincent PW, Klohs WD, et al. (2005) Plasma vascular endothelial growth factor and interleukin-8 as biomarkers of antitumor efficacy of a prototypical erbB family tyrosine kinase inhibitor. Mol Cancer Ther 4: 938–47

    Article  PubMed  CAS  Google Scholar 

  107. Gibson TB, Ranganathan A, Grothey A (2006) Randomized phase III trial results of panitumumab, a fully human anti-epidermal growth factor receptor monoclonal antibody, in metastatic colorectal cancer. Clin Colorectal Cancer 6: 29–31

    Article  PubMed  Google Scholar 

  108. Konecny GE, Pegram MD, Venkatesan N, et al. (2006) Activity of the dual kinase inhibitor lapatinib (GW572016) against HER-2-overexpressing and trastuzumab-treated breast cancer cells. Cancer Res 66: 1630–9

    Article  PubMed  CAS  Google Scholar 

  109. Arteaga CL, Baselga J (2003) Clinical trial design and end points for epidermal growth factor receptor-targeted therapies: implications for drug development and practice. Clin Cancer Res 9: 1579–89

    PubMed  CAS  Google Scholar 

  110. Ranson M (2004) Epidermal growth factor receptor tyrosine kinase inhibitors. Br J Cancer 90: 2250–5

    PubMed  CAS  Google Scholar 

  111. Ranson M, Hammond LA, Ferry D, et al. (2002) ZD1839, a selective oral epidermal growth factor receptor-tyrosine kinase inhibitor, is well tolerated and active in patients with solid, malignant tumors: results of a phase I trial. J Clin Oncol 20: 2240–50

    Article  PubMed  CAS  Google Scholar 

  112. Robert F, Ezekiel MP, Spencer SA, et al. (2001) Phase I study of anti—epidermal growth factor receptor antibody cetuximab in combination with radiation therapy in patients with advanced head and neck cancer. J Clin Oncol 19: 3234–43

    PubMed  CAS  Google Scholar 

  113. Saif MW, Cohenuram M (2006) Role of panitumumab in the management of metastatic colorectal cancer. Clin Colorectal Cancer 6(2): 118–24

    Article  PubMed  CAS  Google Scholar 

  114. Baselga J, Rischin D, Ranson M, et al. (2002) Phase I safety, pharmacokinetic, and pharmacodynamic trial of ZD1839, a selective oral epidermal growth factor receptor tyrosine kinase inhibitor, in patients with five selected solid tumor types. J Clin Oncol 20: 4292–302

    Article  PubMed  CAS  Google Scholar 

  115. Hamilton M, Wolf J, Rusk J, et al. (2006) Effects of smoking on the pharmacokinetics of erlotinib. Clin Cancer Res 1: 2166–71

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag France

About this chapter

Cite this chapter

Bozec, A., Milano, G. (2008). Monoclonaux contre inhibiteurs de tyrosine kinase. In: Les thérapies ciblées. Oncologie pratique. Springer, Paris. https://doi.org/10.1007/978-2-287-36008-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-2-287-36008-4_6

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-287-36007-7

  • Online ISBN: 978-2-287-36008-4

Publish with us

Policies and ethics