Skip to main content

Nouvelles approches dans les thérapeutiques ciblées: les récepteurs des facteurs de croissance de type insuline (IGF) et les cyclines

  • Chapter
Les thérapies ciblées

Part of the book series: Oncologie pratique ((ONCOLPRAT))

  • 382 Accesses

Abstrait

Depuis la fin des années 1990, ľarsenal anticancéreux s’est enrichi ďune nouvelle famille de molécules, les thérapies ciblées. Elles résultent des progrès de la biologie qui ont permis de mieux appréhender les molécules et les voies de signalisation prépondérantes dans les cellules tumorales. Ainsi, les avancées thérapeutiques ne reposent plus sur une approche empirique comme pour les cytotoxiques conventionnels mais sur une véritable ingénierie pour bloquer les cibles déterminées par la recherche fondamentale. La connaissance fine des phénotypes tumoraux et les thérapies ciblées permettent de proposer de véritables traitements à la carte aux patients. La présente revue se focalise sur deux nouvelles voies en cours ďexploration et porteuses ďespoir: la voie du récepteur du facteur de croissance de type insuline (IGF1R) et le ciblage des cyclines impliquées dans le cycle cellulaire.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. Pollak MN, Schernhammer E, Hankinson SE (2004) Insulin-like growth factors and neoplasia. Nat Rev Cancer 4: 505–18

    Article  PubMed  CAS  Google Scholar 

  2. Bahr C, Groner B (2005) The IGF-1 receptor and its contributions to metastatic tumor growth-novel approaches to the inhibition of IGF-1R function. Growth Factors 23: 1–14

    Article  PubMed  Google Scholar 

  3. Wang Y, Sun Y (2002) Insulin-like growth factor receptor-1 as an anti-cancer target: blocking transformation and inducing apoptosis. Curr Cancer Drug Targets 2: 191–207

    Article  PubMed  CAS  Google Scholar 

  4. Miller BS, Yee D (2005) Type I insulin-like growth factor receptor as a therapeutic target in cancer. Cancer Res 65: 10123–7

    Article  PubMed  CAS  Google Scholar 

  5. Arteaga CL, Kitten LJ, Coronado EB, et al. (1989) Blockade of the type I somatomedin receptor inhibits growth of human breast cancer cells in athymic mice. J Clin Invest 84: 1418–23

    Article  PubMed  CAS  Google Scholar 

  6. Maloney EK, McLaughlin JL, Dagdigian NE, et al. (2003) An anti-insulin-like growth factor I receptor antibody that is a potent inhibitor of cancer cell proliferation. Cancer Res 63: 5073–83

    PubMed  CAS  Google Scholar 

  7. Sachdev D, Singh R, Fujita-Yamaguchi Y, et al. (2006) Down-regulation of insulin receptor by antibodies against the type I insulin-like growth factor receptor: implications for anti-insulin-like growth factor therapy in breast cancer. Cancer Res 66: 2391–402

    Article  PubMed  CAS  Google Scholar 

  8. Burtrum D, Zhu Z, Lu D, et al. (2003) A fully human monoclonal antibody to the insulin-like growth factor I receptor blocks ligand-dependent signaling and inhibits human tumor growth in vivo. Cancer Res 63: 8912–21

    PubMed  CAS  Google Scholar 

  9. Wu JD, Odman A, Higgins LM, et al. (2005) In vivo effects of the human type I insulin-like growth factor receptor antibody A12 on androgen-dependent and androgen-independent xenograft human prostate tumors. Clin Cancer Res 11: 3065–74

    Article  PubMed  CAS  Google Scholar 

  10. Wu JD, Haugk K, Coleman I, et al. (2006) Combined in vivo effect of A12, a type 1 insulin-like growth factor receptor antibody, and docetaxel against prostate cancer tumors. Clin Cancer Res 12: 6153–60

    Article  PubMed  CAS  Google Scholar 

  11. Allen GW, Saba C, Armstrong EA, et al. (2007) Insulin-like growth factor-I receptor signaling blockade combined with radiation. Cancer Res 67: 1155–62

    Article  PubMed  CAS  Google Scholar 

  12. Cohen BD, Baker DA, Soderstrom C, et al. (2005) Combination therapy enhances the inhibition of tumor growth with the fully human anti-type 1 insulin-like growth factor receptor monoclonal antibody CP-751,871. Clin Cancer Res 11: 2063–73

    Article  PubMed  CAS  Google Scholar 

  13. Goetsch L, Gonzalez A, Leger O, et al. (2005) A recombinant humanized anti-insulin-like growth factor receptor type I antibody (h7C10) enhances the antitumor activity of vinorelbine and anti-epidermal growth factor receptor therapy against human cancer xenografts. Int J Cancer 113: 316–28

    Article  PubMed  CAS  Google Scholar 

  14. Wang Y, Hailey J, Williams D, et al. (2005) Inhibition of insulin-like growth factor-I receptor (IGF-IR) signaling and tumor cell growth by a fully human neutralizing anti-IGF-IR antibody. Mol Cancer Ther 4: 1214–21

    Article  PubMed  CAS  Google Scholar 

  15. Sachdev D, Li SL, Hartell JS, et al. (2003) A chimeric humanized single-chain antibody against the type I insulin-like growth factor (IGF) receptor renders breast cancer cells refractory to the mitogenic effects of IGF-I. Cancer Res 63: 627–35

    PubMed  CAS  Google Scholar 

  16. Ye JJ, Liang SJ, Guo N, et al. (2003) Combined effects of tamoxifen and a chimeric humanized single chain antibody against the type I IGF receptor on breast tumor growth in vivo. Horm Metab Res 35: 836–42

    Article  PubMed  CAS  Google Scholar 

  17. Lu D, Zhang H, Koo H, et al. (2005) A fully human recombinant IgF-like bispecific antibody to both the epidermal growth factor receptor and the insulin-like growth factor receptor for enhanced antitumor activity. J Biol Chem 280: 19665–72

    Article  PubMed  CAS  Google Scholar 

  18. Mitsiades CS, Mitsiades NS, McMullan CJ, et al. (2004) Inhibition of the insulin-like growth factor receptor-1 tyrosine kinase activity as a therapeutic strategy for multiple myeloma, other hematologic malignancies, and solid tumors. Cancer Cell 5: 221–30

    Article  PubMed  CAS  Google Scholar 

  19. Warshamana-Greene GS, Litz J, Buchdunger E, et al. (2005) The insulin-like growth factor-I receptor kinase inhibitor, NVP-ADW742, sensitizes small cell lung cancer cell lines to the effects of chemotherapy. Clin Cancer Res 11: 1563–71

    Article  PubMed  CAS  Google Scholar 

  20. Tanno B, Mancini C, Vitali R, et al. (2006) Down-regulation of insulin-like growth factor I receptor activity by NVP-AEW541 has an antitumor effect on neuroblastoma cells in vitro and in vivo. Clin Cancer Res 12: 6772–80

    Article  PubMed  CAS  Google Scholar 

  21. Vasilcanu D, Girnita A, Girnita L, et al. (2004) The cyclolignan PPP induces activation loop-specific inhibition of tyrosine phosphorylation of the insulin-like growth factor-1 receptor. Link to the phosphatidyl inositol-3 kinase/Akt apoptotic pathway. Oncogene 23: 7854–62

    Article  PubMed  CAS  Google Scholar 

  22. Stromberg T, Ekman S, Girnita L, et al. (2006) IGF-1 receptor tyrosine kinase inhibition by the cyclolignan PPP induces G2/M-phase accumulation and apoptosis in multiple myeloma cells. Blood 107: 669–78

    Article  PubMed  Google Scholar 

  23. Vasilcanu D, Weng WH, Girnita A, et al. (2006) The insulin-like growth factor-1 receptor inhibitor PPP produces only very limited resistance in tumor cells exposed to long-term selection. Oncogene: 25: 3186–95

    Article  PubMed  CAS  Google Scholar 

  24. Menu E, Jernberg-Wiklund H, Stromberg T, et al. (2006) Inhibiting the IGF-1 receptor tyrosine kinase with the cyclolignan PPP: an in vitro and in vivo study in the 5T33MM mouse model. Blood 107: 655–60

    Article  PubMed  CAS  Google Scholar 

  25. Schwartz GK, Shah MA (2005) Targeting the cell cycle: a new approach to cancer therapy. J Clin Oncol 23: 9408–21

    Article  PubMed  CAS  Google Scholar 

  26. Sausville EA (2002) Complexities in the development of cyclin-dependent kinase inhibitor drugs. Trends Mol Med 8: S32–7

    Article  Google Scholar 

  27. Sausville EA, Arbuck SG, Messmann R, et al. (2001) Phase I trial of 72-hour continuous infusion UCN-01 in patients with refractory neoplasms. J Clin Oncol 19: 2319–33

    PubMed  CAS  Google Scholar 

  28. Kortmansky J, Shah MA, Kaubisch A, et al. (2005) Phase I trial of the cyclin-dependent kinase inhibitor and protein kinase C inhibitor 7-hydroxystaurosporine in combination with Fluorouracil in patients with advanced solid tumors. J Clin Oncol 23: 1875–84

    Article  PubMed  CAS  Google Scholar 

  29. Fracasso PM, Rudek MA, Naughton MJ, et al. (2004) Phase I study combining UCN-01 with irinotecan in resistant solid tumor malignancies. Proc Am Soc Clin Oncol 22: Abstract 3139

    Google Scholar 

  30. Dai Y, Khanna P, Chen S, et al. (2007) Statins synergistically potentiate 7-hydroxystaurosporine (UCN-01) lethality in human leukemia and myeloma cells by disrupting Ras farnesylation and activation. Blood

    Google Scholar 

  31. Senderowicz AM, Headlee D, Stinson SF, et al. (1998) Phase I trial of continuous infusion flavopiridol, a novel cyclin-dependent kinase inhibitor, in patients with refractory neoplasms. J Clin Oncol 16: 2986–99

    PubMed  CAS  Google Scholar 

  32. Stadler WM, Vogelzang NJ, Amato R, et al. (2000) Flavopiridol, a novel cyclin-dependent kinase inhibitor, in metastatic renal cancer: a University of Chicago Phase II Consortium study. J Clin Oncol 18: 371–5

    PubMed  CAS  Google Scholar 

  33. Schwartz GK, Ilson D, Saltz L, et al. (2001) Phase II study of the cyclin-dependent kinase inhibitor flavopiridol administered to patients with advanced gastric carcinoma. J Clin Oncol 19: 1985–92

    PubMed  CAS  Google Scholar 

  34. Morris DG, Bramwell VH, Turcotte R, et al. (2006) A Phase II Study of Flavopiridol in Patients With Previously Untreated Advanced Soft Tissue Sarcoma. Sarcoma 2006: 64374

    Article  PubMed  Google Scholar 

  35. Rathkopf D, Fornier M, Shah MA, et al. (2004) A Phase I clinical and pharmacokinetic study of weekly docetaxel followed by flavopiridol: promising activity in metastatic pancreatic cancer. Proc Am Soc Clin Oncol 23: Abstract 4096

    Google Scholar 

  36. Shah MA, Kortmansky J, Motwani M, et al. (2005) A phase I clinical trial of the sequential combination of irinotecan followed by flavopiridol. Clin Cancer Res 11: 3836–45

    Article  PubMed  CAS  Google Scholar 

  37. Yamada Y, Yamamoto N, Shimoyama T, et al. (2005) Phase I pharmacokinetic and pharmacogenomic study of E7070 administered once every 21 days. Cancer Sci 96: 721–8

    Article  PubMed  CAS  Google Scholar 

  38. Haddad RI, Weinstein LJ, Wieczorek TJ, et al. (2004) A phase II clinical and pharmacodynamic study of E7070 in patients with metastatic, recurrent, or refractory squamous cell carcinoma of the head and neck: modulation of retinoblastoma protein phosphorylation by a novel chloroindolyl sulfonamide cell cycle inhibitor. Clin Cancer Res 10: 4680–7

    Article  PubMed  CAS  Google Scholar 

  39. Dittrich C, Zandvliet AS, Gneist M, et al. (2007) A phase I and pharmacokinetic study of indisulam in combination with carboplatin. Br J Cancer 96: 559–66

    Article  PubMed  CAS  Google Scholar 

  40. Pierga JY, Faivre S, Vera K, et al. (2003) A phase I and pharmacokinetic (PK) trial of CYC202, a novel oral cyclin-dependent kinase (CDK) inhibitor, in patients (pts) with advanced solid tumors. Proc Am Soc Clin Oncol 22: Abstract 840

    Google Scholar 

  41. Jones SF, Burris HA, Kies M, et al. (2003) A phase I study to determine the safety and pharmacokinetics (PK) of BMS-387032 given intravenously every three weeks in patients with metastatic refractory solid tumors. Proc Am Soc Clin Oncol 22: Abstract 798

    Google Scholar 

  42. Richardson PG, Sonneveld P, Schuster MW, et al. (2005) Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. N Engl J Med 352: 2487–98

    Article  PubMed  CAS  Google Scholar 

  43. Zhang H, Pelzer AM, Kiang DT, et al. (2007) Down-regulation of type I insulin-like growth factor receptor increases sensitivity of breast cancer cells to insulin. Cancer Res 67: 391–7

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag France

About this chapter

Cite this chapter

Fayette, J., Fleury, B., Blay, J.Y. (2008). Nouvelles approches dans les thérapeutiques ciblées: les récepteurs des facteurs de croissance de type insuline (IGF) et les cyclines. In: Les thérapies ciblées. Oncologie pratique. Springer, Paris. https://doi.org/10.1007/978-2-287-36008-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-2-287-36008-4_11

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-287-36007-7

  • Online ISBN: 978-2-287-36008-4

Publish with us

Policies and ethics