Skip to main content

Abstrait

Le maintien ďune acidité adéquate (pH) des milieux biologiques, c’est-à-dire dans ďétroites limites, est une grande caractéristique des processus vivants, et les grandes variations de pH telles qu’on les rencontre en chimie sont incompatibles avec la vie. Le pH est une caractéristique physique du milieu et des différents métabolites présents. Ľimportance du pH est liée à la densité énergétique très particulière du proton et, de ce fait, au champ électrique important qu’il génère. À titre ďexemple, la phosphofructokinase, enzyme majeure du contrôle de la glycolyse, a une activité réduite de 90% lorsque le pH passe de 7,35 à 7,25 (1)! Les interactions entre substrats et enzyme, hormones ou autres types de messagers et récepteurs dépendent du pH, de même que les liaisons aux protéines. Le métabolisme énergétique est étroitement lié à ľétat acidobasique (voir chapitre 7) car il existe une forte relation fonctionnelle entre équilibre acido-basique, oxydation phosphorylante et métabolisme énergétique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. Trivedi B, Danforth W (1966) Effect of pH on the kinetics of frog muscle phosphofructokinase. J Biol Chem 245: 4110–2

    Google Scholar 

  2. Leverve X, Fontaine E, Péronnet F (1996) Métabolisme énergétique. Encycl Med Chir. Paris, Elsevier 10-371-A-10:12p. vol Endocrinologie-Nutrition

    Google Scholar 

  3. Ichai C, Grimaud D (1995) Troubles de ľéquilibre acidobasique. In: Samii K (ed). Traité ďanesthésie-réanimation, Paris, Flammarion, p 1232

    Google Scholar 

  4. Stewart P (1983) Modern quantitative acid-base chemistry. Can J Physiol Pharmacol 61: 1444–61

    PubMed  CAS  Google Scholar 

  5. Leblanc M, Kellum J (1997) Biochemical and biophysical principles of hydrogen ion metabolism. In: Ronco C, Bellomo R (eds). Critical Care Nephrology. Dordrecht, Kluwer Academic Publisher, p 261

    Google Scholar 

  6. Magder S (1997) Pathophysiology of metabolic acid-base distrubancies in patients with critical illness. In: Ronco C, Bellomo R (eds). Critical Care Nephrology. Dordrecht, Kluwer Academic Publisher, p 279

    Google Scholar 

  7. Alfaro V, Torras R, Ibanez J, Palacio L (1996) A physical-chemical analysis of the acid-base response to chronic obstructive pulmonary disease. Can J 4: 1229–35

    Google Scholar 

  8. Fencl V, Leith D (1993) Stewart’s quantitative acid base chemistry: Applications in biology and medicine. Resp Physiol 91: 1–16

    Article  CAS  Google Scholar 

  9. Gilfix B, Bique M, Magder S (1993) A physical chemical approach to the analysis of acid-base balance in the clinical setting. J Crit Care 8: 187–97

    Article  PubMed  CAS  Google Scholar 

  10. Jabor A, Katzda A (1995) Modelling of acid base equilibria. Acta Anaesth Scand 39(suppl 109): 119–22

    Google Scholar 

  11. Kellum J, Bellomo R, Kramer D, Pinsky M (1997) Splanchnic buffering of metabolic acid during early endotoxemia. J Crit Care 12:7–12

    Article  PubMed  CAS  Google Scholar 

  12. Kellum J, Kramer D, Pinsky M (1995) Strong ion gap: a methodology for exploring un-explained anions. J Crit Care 10: 51–5

    Article  PubMed  CAS  Google Scholar 

  13. Bleich H (1989) The clinical implication of venous carbon dioxide tension. N Engl J Med 320: 1345–6

    Article  PubMed  CAS  Google Scholar 

  14. Leverve X, Guignier M (1991) Faut-il alcaliniser les acidoses métaboliques? Ann Fr Anesth Réanim 10: 200–6

    Article  PubMed  CAS  Google Scholar 

  15. Jungermann K, Kietzmann T (1996) Zonation of parenchymal and nonparenchymal metabolism in liver. Annu Rev Nutr 16: 179–203

    Article  PubMed  CAS  Google Scholar 

  16. Häussinger D, Gerok W, Sies H (1983) Regulation of flux through glutaminase and glutamine synthetase in isolated perfused rat liver. Biochim Biophys Acta 755: 272–8

    PubMed  Google Scholar 

  17. Atkinson D, Camien M (1982) The role of urea synthesis in the removal of metabolic bicarbonate and the regulation of blood pH. Curr Top Cell Regul 21: 261–302

    PubMed  CAS  Google Scholar 

  18. Häussinger D, Gerok W (1985) Hepatic urea synthesis and pH regulation role of CO2, HCO3, pH and the activity of carbonic anhydrase. Eur J Biochem 152: 381–6

    Article  PubMed  Google Scholar 

  19. Häussinger D, Gerok W, Sies H (1984) Hepatic role in pH regulation: role of the intracellular glutamine cycle. Trends Biochem Sci 9: 300–2

    Article  Google Scholar 

  20. Lenzen C, Soboll S, Sies H, Häussinger D (1987) pH control of hepatic glutamine degradation. Role of transport. Eur J Biochem 166: 483–8

    Article  PubMed  CAS  Google Scholar 

  21. McGivan J, Bradford N, Verhoeven A, Meijer A (1984) Liver glutaminase. In: Häussinger D, Sies H (eds). Glutamine metabolism in mammalian tissues. Berlin, Springer-Verlag p 122

    Google Scholar 

  22. Kamemoto ES, Atkinson DE (1985) Modulation of the activity of rat liver acetylglutamate synthase by pH and arginine concentration. Arch Biochem Biophys 243(1): 100–7

    Article  PubMed  CAS  Google Scholar 

  23. Meijer AJ, Hansgens HESJ (1982) Ureagenesis. In: Sies H (ed). Metabolic compartmentation. London, Academic Press, p 259

    Google Scholar 

  24. Rémésy C, Demigné C, Fafournoux P (1986) Control of ammonia distribution ratio across the liver cell membrane and of ureogenesis by extracellular pH. Eur J Biochem 158: 283–8

    Article  PubMed  Google Scholar 

  25. Häussinger D, Meijer AJ, Gerok W, Sies H (1988) Hepatic nigrogen metabolism and acid-base homeostasis. In: Haässinger D (ed). pH homeostasis: mechanism and control. London, Academic Press p 337

    Google Scholar 

  26. Dodgson SJ, Forster RE, Storey BT, Mela L (1980) Mitochondrial carbonic anhydrase. Proc Natl Acad Sci 77: 5562–6

    Article  PubMed  CAS  Google Scholar 

  27. Fafournoux P, Demigné C, Rémésy C, Le Cam A (1983) Bidirectional transport of glutamine across the cell membrane in rat liver. Biochem J 216: 401–8

    PubMed  CAS  Google Scholar 

  28. Kilberg MS, Handlogten ME, Christensen HN (1980) Characteristics of an amino acid transport system in rat liver for glutamine, asparagine, histidine, and closely related analogs. J Biol Chem 255: 4011–9

    PubMed  CAS  Google Scholar 

  29. Boon L, Blommart PJE, Meijer AJ et al. (1994) Acute acidosis inhibits liver amino acid transport: no primary role for the ornithine cycle in acid-base homeostasis. Am J Physiol 267: F1015–20

    PubMed  CAS  Google Scholar 

  30. Boon L, Blommart PJE, Meijer AJ et al. (1994) Effect of chronic acidosis on hepatic amino acid uptake and gene regulation: implications for control of acid-base balance. In: Tizianello A, Baverel G, Endou H, Schoolwerth AC, O’Donovan DJ (eds). Renal ammoniagenesis and interorgan cooperation in acid-base homeostasis (Contrib Nephrol 110), Basel, Karger 138–43

    Google Scholar 

  31. Cohen R (1991) Roles of the liver and kidney in acid-base regulation and its disorders. Brit J Anaesth 67: 154–64

    Article  PubMed  CAS  Google Scholar 

  32. Mitch WE, Price SR, May RC et al. (1994) Metabolic consequences of uremia: extending the concept of adaptative responses to protein metabolism. Am J Kidney Dis 23: 224–8

    PubMed  CAS  Google Scholar 

  33. Oh MS (1989) A new method for estimating G-I absorption of alkali. Kidney Int 36: 915–7

    Article  PubMed  CAS  Google Scholar 

  34. Cohen RM, Feldman GM, Fernandez PC (1997) The balance of acid, base and charge in health and disease. Kidney Int 52: 287–93

    Article  PubMed  CAS  Google Scholar 

  35. Hamm LL (1990) Renal handling of citrate. Kidney Int 38: 728–35

    Article  PubMed  CAS  Google Scholar 

  36. Leverve X, Mustafa I, Péronnet F (1998) Pivotal role of lactate in aerobic metabolism. In: Vincent J (ed). Yearbook of intensive care and emergency medicine. Berlin, Springer-Verlag, p 588

    Google Scholar 

  37. Halperin M, Cheema-Dhadli S, Halperin F, Kamel K (1994) Rationale for the use of sodium bicarbonate in a patient with lactic acidosis due to poor cardiac output. Nephron 66: 258–61

    Article  PubMed  CAS  Google Scholar 

  38. Gores G, Nieminen A, Wray B et al. (1989) Intracellular pH during « chemical hypoxia » in cultured rat hepatocytes. Protection by intracellular acidosis against the onset of cell death. J Clin Invest 83: 386–96

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag France, Paris

About this chapter

Cite this chapter

Leverve, X. (2007). Équilibre acido-basique. In: Traité de nutrition artificielle de l’adulte. Springer, Paris. https://doi.org/10.1007/978-2-287-33475-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-2-287-33475-7_18

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-287-33474-0

  • Online ISBN: 978-2-287-33475-7

Publish with us

Policies and ethics