Skip to main content

Chronic Heart Failure in Children with Congenital Heart Disease

  • Chapter
  • First Online:
Heart Failure in Congenital Heart Disease:
  • 1659 Accesses

Abstract

Surgical therapy for children born with congenital heart disease has improved survival enormously in this group of patients. Children who were once expected to die either before or immediately after surgery, now enjoy longevity that 20 years ago was unheard of.1 Now that perioperative mortality has been reduced to very low levels in most complex cardiac lesions, this group of patients has entered into pediatric cardiology clinical care with a relatively new set of needs. These needs include the monitoring and treatment of rhythm abnormalities, valve abnormalities, and ventricular myocardial abnormalities. Derangement in any of these closely linked systems can cause, or at least be associated with, the development of chronic heart failure. Although the recognition and definition of heart failure in this patient population may not be precisely defined as of yet, it is clear that many of these patients will develop signs and symptoms of heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wernovsky G. The paradigm shift toward surgical intervention for neonates with hypoplastic left heart syndrome. Arch Pediatr Adolesc Med. 2008;162:849–854.

    Article  PubMed  Google Scholar 

  2. Hunt SA, Abraham WT, Chin MH et al. ACC/AHA 2005 Guideline update for the diagnosis and management of chronic heart failure in the Adult-Summary Article A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (writing committee to update the 2001 guidelines for the evaluation and management of heart failure). J Am Coll Cardiol. 2005;46:1116–1143.

    Article  Google Scholar 

  3. Rosenthal D, Chrisant MR, Edens E et al. International society for heart and lung transplantation: practice guidelines for management of heart failure in children. J Heart Lung Transplant. 2004;23:1313–1333.

    Article  PubMed  Google Scholar 

  4. Berman W, Jr., Yabek SM, Dillon T, Niland C, Corlew S, Christensen D. Effects of digoxin in infants with congested circulatory state due to a ventricular septal defect. N Engl J Med. 1983;308:363–366.

    Article  PubMed  Google Scholar 

  5. Redington AN, Carvalho JS, Shinebourne EA. Does digoxin have a place in the treatment of the child with congenital heart disease? Cardiovasc Drugs Ther. 1989;3:21–24.

    Article  PubMed  CAS  Google Scholar 

  6. Kimball TR, Daniels SR, Meyer RA et al. Effect of digoxin on contractility and symptoms in infants with a large ventricular septal defect. Am J Cardiol 1991;68:1377–1382.

    Article  PubMed  CAS  Google Scholar 

  7. Seguchi M, Nakazawa M, Momma K. Further evidence suggesting a limited role of digitalis in infants with circulatory congestion secondary to large ventricular septal defect. Am J Cardiol. 1999;83:1408–1411, A8.

    Article  PubMed  CAS  Google Scholar 

  8. Shaddy RE, Teitel DF, Brett C. Short-term hemodynamic effects of captopril in infants with congestive heart failure. Am J Dis Child. 1988;142:100–105.

    PubMed  CAS  Google Scholar 

  9. Montigny M, Davignon A, Fouron JC, Biron P, Fournier A, Elie R. Captopril in infants for congestive heart failure secondary to a large ventricular left-to-right shunt. Am J Cardiol. 1989;63:631–633.

    Article  PubMed  CAS  Google Scholar 

  10. Lloyd TR, Mahoney LT, Knoedel D, Marvin WJ, Jr., Robillard JE, Lauer RM. Orally administered enalapril for infants with congestive heart failure: a dose-finding study. J Pediatr. 1989;114:650–654.

    Article  PubMed  CAS  Google Scholar 

  11. Rheuban KS, Carpenter MA, Ayers CA, Gutgesell HP. Acute hemodynamic effects of converting enzyme inhibition in infants with congestive heart failure. J Pediatr. 1990;117:668–670.

    Article  PubMed  CAS  Google Scholar 

  12. Momma K. ACE inhibitors in pediatric patients with heart failure. Paediatr Drugs. 2006;8:55–69.

    Article  PubMed  Google Scholar 

  13. Buchhorn R, Bartmus D, Siekmeyer W, Hulpke-Wette M, Schulz R, Bursch J. Beta-blocker therapy of severe congestive heart failure in infants with left to right shunts. Am J Cardiol. 1998;81:1366–138.

    Article  PubMed  CAS  Google Scholar 

  14. Buchhorn R, Hulpke-Wette M, Hilgers R, Bartmus D, Wessel A, Bursch J. Propranolol treatment of congestive heart failure in infants with congenital heart disease: The CHF-PRO-INFANT Trial. Congestive heart failure in infants treated with propanol. Int J Cardiol. 2001;79:167–173.

    Article  PubMed  CAS  Google Scholar 

  15. Buchhorn R, Hulpke-Wette M, Nothroff J, Paul T. Heart rate variability in infants with heart failure due to congenital heart disease: reversal of depressed heart rate variability by propranolol. Med Sci Monit. 2002;8:CR661–CR666.

    PubMed  CAS  Google Scholar 

  16. Buchhorn R, Hulpke-Wette M, Ruschewski W et al. Beta-receptor downregulation in congenital heart disease: a risk factor for complications after surgical repair? Ann Thorac Surg. 2002;73:610–613.

    Article  PubMed  Google Scholar 

  17. Buchhorn R, Hulpke-Wette M, Ruschewski W et al. Effects of therapeutic beta blockade on myocardial function and cardiac remodelling in congenital cardiac disease. Cardiol Young. 2003;13:36–43.

    Article  PubMed  Google Scholar 

  18. Pignatelli RH, McMahon CJ, Dreyer WJ et al. Clinical characterization of left ventricular noncompaction in children: a relatively common form of cardiomyopathy. Circulation 2003;108:2672–2678.

    Article  PubMed  Google Scholar 

  19. Doenst T, Schlensak C, Beyersdorf F. Cardioplegia in pediatric cardiac surgery: do we believe in magic? Ann Thorac Surg. 2003;75:1668–1677.

    Article  PubMed  Google Scholar 

  20. Allen BS, Barth MJ, Ilbawi MN. Pediatric myocardial protection: an overview. Semin Thorac Cardiovasc Surg. 2001;13:56–72.

    PubMed  CAS  Google Scholar 

  21. DiBernardo LR, Kirshbom PM, Skaryak LA et al. Acute functional consequences of left ventriculotomy. Ann Thorac Surg. 1998;66:159–165.

    Article  PubMed  CAS  Google Scholar 

  22. Hoffman TM, Wernovsky G, Atz AM et al. Efficacy and safety of milrinone in preventing low cardiac output syndrome in infants and children after corrective surgery for congenital heart disease. Circulation. 2003;107:996–1002.

    Article  PubMed  CAS  Google Scholar 

  23. Shaddy RE, Tani LY. Chronic congestive heart failure. In: Allen HD, Driscoll DJ, Shaddy RE, Feltes T, eds. Moss and Adams’ Heart Disease in Infants, Children, and Adolescents, Including the Fetus and Young Adult. 7th ed. Philadelphia, PA: Lippincott, Williams & Wilkins; 2007:1495–1504.

    Google Scholar 

  24. Hunt SA, Baker DW, Chin MH et al. ACC/AHA guidelines for the evaluation and management of chronic heart failure in the adult: executive summary a report of the American college of cardiology/American heart association task force on practice guidelines (committee to revise the 1995 guidelines for the evaluation and management of heart failure): developed in collaboration with the international society for heart and lung transplantation; endorsed by the heart failure society of America. Circulation. 2001;104:2996–3007.

    Article  PubMed  CAS  Google Scholar 

  25. Bardy GH, Lee KL, Mark DB et al. Amiodarone or an implantable cardioverter-defibrillator for congestive heart failure. N Engl J Med; 2005;352:225–237.

    Article  PubMed  CAS  Google Scholar 

  26. Cleland JG, Daubert JC, Erdmann E et al. The effect of cardiac resynchronization on morbidity and mortality in heart failure. N Engl J Med. 2005;352:1539–1549.

    Article  PubMed  CAS  Google Scholar 

  27. Dubin AM, Janousek J, Rhee E et al. Resynchronization therapy in pediatric and congenital heart disease patients: an international multicenter study. J Am Coll Cardiol. 2005;46:2277–2283.

    Article  PubMed  Google Scholar 

  28. Cecchin F, Frangini PA, Brown DW et al. Cardiac resynchronization therapy (and multisite pacing) in pediatrics and congenital heart disease: five years experience in a single institution. J Cardiovasc Electrophysiol. 2008:58–65.

    Google Scholar 

  29. Mee RB, Harada Y. Retraining of the left ventricle with a left ventricular assist device (Bio-Medicus) after the arterial switch operation. J Thorac Cardiovasc Surg. 1991;101:171–173.

    PubMed  CAS  Google Scholar 

  30. Devaney EJ, Charpie JR, Ohye RG, Bove EL. Combined arterial switch and Senning operation for congenitally corrected transposition of the great arteries: patient selection and intermediate results. J Thorac Cardiovasc Surg. 2003;125:500–507.

    Article  PubMed  Google Scholar 

  31. Quinn DW, McGuirk SP, Metha C et al. The morphologic left ventricle that requires training by means of pulmonary artery banding before the double-switch procedure for congenitally corrected transposition of the great arteries is at risk of late dysfunction. J Thorac Cardiovasc Surg. 2008;135:1137–1144, 1144 e1–e2.

    Article  PubMed  Google Scholar 

  32. Poirier NC, Yu JH, Brizard CP, Mee RB. Long-term results of left ventricular reconditioning and anatomic correction for systemic right ventricular dysfunction after atrial switch procedures. J Thorac Cardiovasc Surg. 2004;127:975–981.

    Article  PubMed  Google Scholar 

  33. Blume ED, Naftel DC, Bastardi HJ, Duncan BW, Kirklin JK, Webber SA. Outcomes of children bridged to heart transplantation with ventricular assist devices: a multi-institutional study. Circulation. 2006;113:2313–2319.

    Article  PubMed  Google Scholar 

  34. Shaddy RE, Webb G. Applying heart failure guidelines to adult congenital heart disease patients. Expert Rev Cardiovasc Ther. 2008;6:165–174.

    Article  PubMed  Google Scholar 

  35. Wernovsky G, Wypij D, Jonas RA et al. Postoperative course and hemodynamic profile after the arterial switch operation in neonates and infants. A comparison of low-flow cardiopulmonary bypass and circulatory arrest. Circulation. 1995;92:2226–2235.

    PubMed  CAS  Google Scholar 

  36. Hutter PA, Bennink GB, Ay L, Raes IB, Hitchcock JF, Meijboom EJ. Influence of coronary anatomy and reimplantation on the long-term outcome of the arterial switch. Eur J Cardiothorac Surg. 2000;18:207–213.

    Article  PubMed  CAS  Google Scholar 

  37. Pasquali SK, Hasselblad V, Li JS, Kong DF, Sanders SP. Coronary artery pattern and outcome of arterial switch operation for transposition of the great arteries: a meta-analysis. Circulation. 2002;106:2575–2580.

    Article  PubMed  Google Scholar 

  38. Schwartz ML, Jonas RA, Colan SD. Anomalous origin of left coronary artery from pulmonary artery: recovery of left ventricular function after dual coronary repair. J Am Coll Cardiol. 1997;30:547–553.

    Article  PubMed  CAS  Google Scholar 

  39. Braunwald E, Rutherford JD. Reversible ischemic left ventricular dysfunction: evidence for the “hibernating myocardium”. J Am Coll Cardiol. 1986;8:1467–1470.

    Article  PubMed  CAS  Google Scholar 

  40. Rein AJ, Colan SD, Parness IA, Sanders SP. Regional and global left ventricular function in infants with anomalous origin of the left coronary artery from the pulmonary trunk: preoperative and postoperative assessment. Circulation. 1987;75:115–123.

    PubMed  CAS  Google Scholar 

  41. del Nido PJ, Duncan BW, Mayer JE, Jr., Wessel DL, LaPierre RA, Jonas RA. Left ventricular assist device improves survival in children with left ventricular dysfunction after repair of anomalous origin of the left coronary artery from the pulmonary artery. Ann Thorac Surg. 1999;67:169–172.

    Article  PubMed  CAS  Google Scholar 

  42. Huebler M, Koster A, Redlin M et al. Repair of ALCAPA in a 4-kg patient followed by successful weaning and “off-pump” explantation of an apical venting pulsatile LVAD. J Card Surg. 2005;20:261–263.

    Article  PubMed  Google Scholar 

  43. Kondo C, Nakazawa M, Momma K, Kusakabe K. Sympathetic denervation and reinnervation after arterial switch operation for complete transposition. Circulation. 1998;97:2414–2419.

    PubMed  CAS  Google Scholar 

  44. Momose M, Kobayashi H, Ikegami H et al. Total and partial cardiac sympathetic denervation after surgical repair of ascending aortic aneurysm. J Nucl Med. 2001;42:1346–1350.

    PubMed  CAS  Google Scholar 

  45. Gagliardi MG, Adorisio R, Crea F, Versacci P, Di Donato R, Sanders SP. Abnormal vasomotor function of the epicardial coronary arteries in children five to eight years after arterial switch operation: an angiographic and intracoronary Doppler flow wire study. J Am Coll Cardiol. 2005;46:1565–1572.

    Article  PubMed  Google Scholar 

  46. Basso C, Maron BJ, Corrado D, Thiene G. Clinical profile of congenital coronary artery anomalies with origin from the wrong aortic sinus leading to sudden death in young competitive athletes. J Am Coll Cardiol. 2000;35:1493–1501.

    Article  PubMed  CAS  Google Scholar 

  47. Daniels SR. Coronary risk factors in children. In: Allen HD, Driscoll DJ, Shaddy RE, Feltes T, eds. Moss and Adams’ Heart Disease in Infants, Children, and Adolescents, Including the Fetus and Young Adult. 7th ed. Philadelphia, PA: Lippincott, Williams & Wilkins; 2007:1447–1479.

    Google Scholar 

  48. Brothers JA, Stephens P, Gaynor JW, Lorber R, Vricella LA, Paridon SM. Anomalous aortic origin of a coronary artery with an interarterial course: should family screening be routine? J Am Coll Cardiol. 2008;51:2062–2064.

    Article  PubMed  Google Scholar 

  49. Anderson JL, Adams CD, Antman EM et al. ACC/AHA 2007 guidelines for the management of patients with unstable angina/non-ST-Elevation myocardial infarction: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the 2002 Guidelines for the Management of Patients With Unstable Angina/Non-ST-Elevation Myocardial Infarction) developed in collaboration with the American College of Emergency Physicians, the Society for Cardiovascular Angiography and Interventions, and the Society of Thoracic Surgeons endorsed by the American Association of Cardiovascular and Pulmonary Rehabilitation and the Society for Academic Emergency Medicine. J Am Coll Cardiol. 2007;50:e1–e157.

    Article  PubMed  Google Scholar 

  50. Antman EM, Anbe DT, Armstrong PW et al. ACC/AHA guidelines for the management of patients with ST-elevation myocardial infarction-executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the 1999 Guidelines for the Management of Patients with Acute Myocardial Infarction). Circulation. 2004;110:588–636.

    Article  PubMed  Google Scholar 

  51. de Lemos JA, Blazing MA, Wiviott SD et al. Early intensive vs a delayed conservative simvastatin strategy in patients with acute coronary syndromes: phase Z of the A to Z trial. JAMA. 2004;292:1307–1316.

    Article  PubMed  CAS  Google Scholar 

  52. Cannon CP, Braunwald E, McCabe CH et al. Intensive versus moderate lipid lowering with statins after acute coronary syndromes. N Engl J Med. 2004;350:1495–1504.

    Article  PubMed  CAS  Google Scholar 

  53. Carabello BA. The current therapy for mitral regurgitation. J Am Coll Cardiol. 2008;52:319–326.

    Article  PubMed  Google Scholar 

  54. Bonow RO, Carabello BA, Chatterjee K et al. Focused update incorporated into the ACC/AHA 2006 guidelines for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the 1998 Guidelines for the Management of Patients With Valvular Heart Disease): endorsed by the Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. Circulation. 2008;118:e523–e661.

    Article  PubMed  Google Scholar 

  55. Krishnan US, Gersony WM, Berman-Rosenzweig E, Apfel HD. Late left ventricular function after surgery for children with chronic symptomatic mitral regurgitation. Circulation 1997;96:4280–4285.

    PubMed  CAS  Google Scholar 

  56. Leversha AM, Wilson NJ, Clarkson PM, Calder AL, Ramage MC, Neutze JM. Efficacy and dosage of enalapril in congenital and acquired heart disease. Arch Dis Child. 1994;70:35–39.

    Article  PubMed  CAS  Google Scholar 

  57. Mori Y, Nakazawa M, Tomimatsu H, Momma K. Long-term effect of angiotensin-converting enzyme inhibitor in volume overloaded heart during growth: a controlled pilot study. J Am Coll Cardiol. 2000;36:270–275.

    Article  PubMed  CAS  Google Scholar 

  58. Calabro R, Pisacane C, Pacileo G, Russo MG. Hemodynamic effects of a single oral dose of enalapril among children with asymptomatic chronic mitral regurgitation. Am Heart J. 1999;138:955–961.

    Article  PubMed  CAS  Google Scholar 

  59. Marcotte F, Honos GN, Walling AD et al. Effect of angiotensin-converting enzyme inhibitor therapy in mitral regurgitation with normal left ventricular function. Can J Cardiol. 1997;13:479–485.

    PubMed  CAS  Google Scholar 

  60. Harris KM, Aeppli DM, Carey CF. Effects of angiotensin-converting enzyme inhibition on mitral regurgitation severity, left ventricular size, and functional capacity. Am Heart J. 2005;150:1106.

    Article  PubMed  Google Scholar 

  61. Dujardin KS, Enriquez-Sarano M, Bailey KR, Seward JB, Tajik AJ. Effect of losartan on degree of mitral regurgitation quantified by echocardiography. Am J Cardiol. 2001;87:570–576.

    Article  PubMed  CAS  Google Scholar 

  62. Tsutsui H, Spinale FG, Nagatsu M et al. Effects of chronic beta-adrenergic blockade on the left ventricular and cardiocyte abnormalities of chronic canine mitral regurgitation. J Clin Invest. 1994;93:2639–2648.

    Article  PubMed  CAS  Google Scholar 

  63. Carabello BA. Aortic regurgitation. A lesion with similarities to both aortic stenosis and mitral regurgitation. Circulation. 1990;82:1051–1053.

    PubMed  CAS  Google Scholar 

  64. Scognamiglio R, Rahimtoola SH, Fasoli G, Nistri S, Dalla Volta S. Nifedipine in asymptomatic patients with severe aortic regurgitation and normal left ventricular function. N Engl J Med. 1994;331:689–694.

    Article  PubMed  CAS  Google Scholar 

  65. Sondergaard L, Aldershvile J, Hildebrandt P, Kelbaek H, Stahlberg F, Thomsen C. Vasodilatation with felodipine in chronic asymptomatic aortic regurgitation. Am Heart J. 2000;139:667–674.

    Article  PubMed  CAS  Google Scholar 

  66. Evangelista A, Tornos P, Sambola A, Permanyer-Miralda G, Soler-Soler J. Long-term vasodilator therapy in patients with severe aortic regurgitation. N Engl J Med. 2005;353:1342–1349.

    Article  PubMed  CAS  Google Scholar 

  67. Carabello BA. Vasodilators in aortic regurgitation-where is the evidence of their effectiveness? N Engl J Med. 2005;353:1400–1402.

    Article  PubMed  CAS  Google Scholar 

  68. Lin M, Chiang HT, Lin SL et al. Vasodilator therapy in chronic asymptomatic aortic regurgitation: enalapril versus hydralazine therapy. J Am Coll Cardiol. 1994;24:1046–1053.

    Article  PubMed  CAS  Google Scholar 

  69. Alehan D, Ozkutlu S. Beneficial effects of 1-year captopril therapy in children with chronic aortic regurgitation who have no symptoms. Am Heart J. 1998;135:598–603.

    Article  PubMed  CAS  Google Scholar 

  70. Thompson LD, McElhinney DB, Culbertson CB et al. Perioperative administration of angiotensin converting enzyme inhibitors decreases the severity and duration of pleural effusions following bidirectional cavopulmonary anastomosis. Cardiol Young. 2001;11:195–200.

    Article  PubMed  CAS  Google Scholar 

  71. Kouatli AA, Garcia JA, Zellers TM, Weinstein EM, Mahony L. Enalapril does not enhance exercise capacity in patients after Fontan procedure. Circulation. 1997;96:1507–1512.

    PubMed  CAS  Google Scholar 

  72. Ohuchi H, Hasegawa S, Yasuda K, Yamada O, Ono Y, Echigo S. Severely impaired cardiac autonomic nervous activity after the Fontan operation. Circulation. 2001;104:1513–1518

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer London

About this chapter

Cite this chapter

Lin, K.Y., Shaddy, R.E. (2010). Chronic Heart Failure in Children with Congenital Heart Disease. In: Shaddy, R. (eds) Heart Failure in Congenital Heart Disease:. Springer, London. https://doi.org/10.1007/978-1-84996-480-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-480-7_3

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-479-1

  • Online ISBN: 978-1-84996-480-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics