Skip to main content

Hereditary Cardiac Conduction Diseases

  • Chapter
  • First Online:
Clinical Cardiogenetics
  • 900 Accesses

Abstract

Cardiac conduction defects (CCD) are a group of serious and potentially life-threatening disorders. CCD belongs to a group of pathologies with an alteration of cardiac conduction through the atrioventricular (AV) node, the His-Purkinje system with right or left bundle branch block, and widening of QRS complexes. CCD can lead to complete atrioventricular block (AV block) and cause syncope and sudden death.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 209.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Michaelsson M, Jonzon A, Riesenfeld T. Isolated congenital complete atrioventricular block in adult life A prospective study. Circulation. 1995;92(3):442-449.

    Article  PubMed  CAS  Google Scholar 

  2. Balmer C, Fasnacht M, Rahn M, et al. Long-term follow up of children with congenital complete atrioventricular block and the impact of pacemaker therapy. Europace. 2002;4(4):345-349.

    Article  PubMed  CAS  Google Scholar 

  3. Tan HL, Bezzina CR, Smits JP, Verkerk AO, Wilde AA. Genetic control of sodium channel function. Cardiovasc Res. 2003;57(4):961-973.

    Article  PubMed  CAS  Google Scholar 

  4. Roden DM, Balser JR, George AL Jr, et al. Cardiac ion channels. Annu Rev Physiol. 2002;64:431-475.

    Article  PubMed  CAS  Google Scholar 

  5. Roden DM, George AL Jr. Structure and function of cardiac sodium and potassium channels. Am J Physiol. 1997;273(2 Pt 2):H511-H525.

    PubMed  CAS  Google Scholar 

  6. Benson DW. Genetics of atrioventricular conduction disease in humans. Anat Rec A Discov Mol Cell Evol Biol. 2004;280(2):934-939.

    Article  PubMed  Google Scholar 

  7. Lenegre J. The pathology of complete atrio-ventricular block. Prog Cardiovasc Dis. 1964;6:317-323.

    Article  Google Scholar 

  8. Lev M, Kinare SG, Pick A. The pathogenesis of complete atrioventricular block. Prog Cardiovasc Dis. 1964;6:317-326.

    Article  PubMed  CAS  Google Scholar 

  9. Hanson EL, Jakobs PM, Keegan H, et al. Cardiac troponin T lysine 210 deletion in a family with dilated cardiomyopathy. J Card Fail. 2002;8:28-32.

    Article  PubMed  CAS  Google Scholar 

  10. Oropeza ES, Cadena CN. New phenotype of familial dilated cardiomyopathy and conduction disorders. Am Heart J. 2003;145:317-323.

    Article  PubMed  Google Scholar 

  11. Morgagni GB. De sedibus, et causis morborum per anatomen indagatis libri quinque. 2 volums. In 1.Venetis, typ. Remondiniana 1761.

    Google Scholar 

  12. Adams R. Cases of disease of the heart, accompanied with pathological observation. Dublin Hospital reports. 1827;4:353-453.

    Google Scholar 

  13. Stokes W. Observations on some cases of permanently slow pulse. Quat J Med Sci. 1846;2:73-85.

    Google Scholar 

  14. van den Heuvel GCJ. Die ziekte van Stokes-Adams en een geval van aangeboren hart blok. Groningen 1908.

    Google Scholar 

  15. Lev M, Kinare SG, Pick A. The pathogenesis of atrioventricular block in coronary disease. Circulation. 197;42:409-425.

    Article  Google Scholar 

  16. Bharati S, Lev M, Dhingra RC, et al. Electrophysiologic and pathologic correlations in two cases of chronic second degree atrioventricular block with left bundle branch block. Circulation. 1975;52(2):221-229.

    Article  PubMed  CAS  Google Scholar 

  17. Lev M, Cuadros H, Paul MH. Interruption of the atrioventricular bundle with congenital atrioventricular block. Circulation. 1971;43(5):703-710.

    Article  PubMed  CAS  Google Scholar 

  18. Morquio L. Sur une maladie infantile et familiale caracterisee par des modifications permanentes du pouls, des attaques syncopales et epileptiformes et la mort subite. Arch Med Enfants. 1901;4:467-475.

    Google Scholar 

  19. Osler W. On the so-called Stokes-Adams disease. Lancet. 1903;II:516-524.

    Article  Google Scholar 

  20. Fulton ZMK, Judson CF, Norris GW. Congenital heart block occurring in a father and two children, one an infant. Am J Med Sci. 1910;140:339-348.

    Article  Google Scholar 

  21. Wallgren A, Winblad S. Congenital heart-block. Acta Paediat. 1937;20:175-204.

    Article  Google Scholar 

  22. Wendkos MH. Familial congenital complete A-V heart blocks. Am Heart J. 1947;34:138-142.

    Article  PubMed  CAS  Google Scholar 

  23. Gazes PC, Culler RM, Taber E, et al. Congenital familial cardiac conduction defects. Circulation. 1965;32:32-34.

    Article  PubMed  CAS  Google Scholar 

  24. Combrink JMD, Snyman HW. Familial bundle branch block. Am Heart J. 1962;64:397-400.

    Article  PubMed  CAS  Google Scholar 

  25. Steenkamp WF. Familial trifascicular block. Am Heart J. 1972;84:758-760.

    Article  PubMed  CAS  Google Scholar 

  26. Brink AJ, Torrington M. Progressive familial heart block—two types. S Afr Med J. 1977;52:53-59.

    PubMed  CAS  Google Scholar 

  27. Van der Merwe PL, Weymar HW, Torrington M, Brink AJ. Progressive familial heart block. Part II. Clinical and ECG confirmation of progression-report on 4 cases. S Afr Med J. 1986;70(6):356-357.

    PubMed  Google Scholar 

  28. Van der Merwe PL, Weymar HW, Torrington M, Brink AJ. Progressive familial heart block (type I). A follow-up study after 10 years. S Afr Med J. 1988;73:275-276.

    PubMed  Google Scholar 

  29. Stephan E. Hereditary bundle branch system defect: survey of a family with four affected generations. Am Heart J. 1978;95:89-95.

    Article  PubMed  CAS  Google Scholar 

  30. Stephan E, de Meeus A, Bouvagnet P. Hereditary bundle branch defect: right bundle branch blocks of different causes have different morphologic characteristics. Am Heart J. 1997;133:249-256.

    Article  PubMed  CAS  Google Scholar 

  31. Brink PA, Ferreira A, Moolman JC, et al. Gene for progressive familial heart block type I maps to chromosome 19q13. Circulation. 1995;91:1633-1640.

    Article  PubMed  CAS  Google Scholar 

  32. de Meeus A, Stephan E, Debrus S, et al. An isolated cardiac conduction disease maps to chromosome 19q. Circ Res. 1995;77(4):735-740.

    Article  PubMed  Google Scholar 

  33. Kruse M, Schulze-Bahr E, Corfield V, et al. Impaired endocytosis of the ion channel TRPM4 is associated with human progressive familial heart block type I. J Clin Invest. 2009;119(9):2737-2744.

    Article  PubMed  CAS  Google Scholar 

  34. Hui Liu, Loubna EL ZEIN, Martin Kruse, et al. Gain-of-function mutations in TRPM4 cause autosomal dominant isolated cardiac conduction disease. Circulation: Cardiovascular Genetics 2010;3:374-385 Published online before print June 19, 2010, doi: 10.1161/CIRCGENETICS.109.930867

    Google Scholar 

  35. Schott JJ, Alshinawi C, Kyndt F, et al. Cardiac conduction defects associate with mutations in SCN5A. Nat Genet. 1999;23:20-21.

    Article  PubMed  CAS  Google Scholar 

  36. Probst V, Kyndt F, Potet F, et al. Haploinsufficiency in combination with aging causes SCN5A-linked hereditary Lenegre disease. J Am Coll Cardiol. 2003;41(4):643-652.

    Article  PubMed  CAS  Google Scholar 

  37. Tan HL, Bink-Boelkens MT, Bezzina CR, et al. A sodium-channel mutation causes isolated cardiac conduction disease. Nature. 2001;409:1043-1047.

    Article  PubMed  CAS  Google Scholar 

  38. Wang DW, Viswanathan PC, Balser JR, et al. Clinical, genetic, and biophysical characterization of SCN5A mutations associated with atrioventricular conduction block. Circulation. 2002;105:341-346.

    Article  PubMed  CAS  Google Scholar 

  39. Bezzina CR, Rook MB, Groenewegen WA, et al. Compound heterozygosity for mutations (W156X and R225W) in SCN5A associated with severe cardiac conduction disturbances and degenerative changes in the conduction system. Circ Res. 2003;92:159-168.

    Article  PubMed  CAS  Google Scholar 

  40. Niu DM, Hwang B, Hwang HW, et al. A common SCN5A polymorphism attenuates a severe cardiac phenotype caused by a non-sense SCN5A mutation in a Chinese family with an inherited cardiac conduction defect. J Med Genet. 2006;43(10):817-821.

    Article  PubMed  CAS  Google Scholar 

  41. Viswanathan PC, Benson DW, Balser JR. A common SCN5A polymorphism modulates the biophysical effects of an SCN5A mutation. J Clin Invest. 2003;111(3):341-346.

    PubMed  CAS  Google Scholar 

  42. Makita N, Sasaki K, Groenewegen WA, et al. Congenital atrial standstill associated with coinheritance of a novel SCN5A mutation and connexin 40 polymorphisms. Heart Rhythm. 2005;2(10):1128-1134.

    Article  PubMed  Google Scholar 

  43. McNair WP, Ku L, Taylor MR, et al. SCN5A mutation associated with dilated cardiomyopathy, conduction disorder, and arrhythmia. Circulation. 2004;110(15):2163-2167.

    Article  PubMed  CAS  Google Scholar 

  44. Olson TM, Michels VV, Ballew JD, et al. Sodium channel mutations and susceptibility to heart failure and atrial fibrillation. JAMA. 2005;293(4):447-454.

    Article  PubMed  CAS  Google Scholar 

  45. Remme CA, Wilde AA, Bezzina CR. Cardiac sodium channel overlap syndromes: different faces of SCN5A mutations. Trends Cardiovasc Med. 2008 Apr;18(3):78-87.

    Article  PubMed  CAS  Google Scholar 

  46. Watanabe H et al. Sodium channel beta1 subunit mutations associated with Brugada syndrome and cardiac conduction disease in humans. J Clin Invest. 2008;118:2260-2268.

    PubMed  CAS  Google Scholar 

  47. Mestroni L, Rocco C, Gregori D, et al. Familial dilated cardiomyopathy: evidence for genetic and phenotypic heterogeneity. J Am Coll Cardiol. 1999;34:181-190.

    Article  PubMed  CAS  Google Scholar 

  48. Karkkainen S, Peuhkurinen K. Genetics of dilated cardiomyopathy. Ann Med. 2007;39:91-107. A comprehensive review of the known genetic mutations that have been shown to cause FDC.

    Article  PubMed  CAS  Google Scholar 

  49. Burkett EL, Hershberger RE. Clinical and genetic issues in familial dilated cardiomyopathy. J Am Coll Cardiol. 2005;45:969-981.

    Article  PubMed  CAS  Google Scholar 

  50. Fatkin D, MacRae C, Sasaki T, et al. Missense mutations in the rod domain of the lamin A/C gene as causes of dilated cardiomyopathy and conduction system disease. N Engl J Med. 1999;341:1715-1724.

    Article  PubMed  CAS  Google Scholar 

  51. van Berlo JH, de Voogt WG, van der Kooi AJ, et al. Meta-analysis of clinical characteristics of 299 carriers of LMNA gene mutations: do lamin A/C mutations portend a high risk of sudden death? J Mol Med. 2005;83:79-83.

    Article  PubMed  CAS  Google Scholar 

  52. Gruenbaum Y, Goldman RD, Meyuhas R, et al. The nuclear lamina and its functions in the nucleus. Int Rev Cytol. 2006;226:1-62.

    Article  Google Scholar 

  53. Shumaker DK, Kuczmarski ER, Goldman RD. The nucleoskeleton: lamins and actin are major players in essential nuclear functions. Curr Opin Cell Biol. 2003;15:358-366.

    Article  PubMed  CAS  Google Scholar 

  54. Meune C, van Berlo J, Anselme F, et al. Primary prevention of sudden death in patients with lamin A/C gene mutations. N Engl J Med. 2006;354:209-210.

    Article  PubMed  CAS  Google Scholar 

  55. Pease WE, Nordenberg A, Ladda RL. Genetic counselling in familial atrial septal defect with prolonged atrio-ventricular conduction. Circulation. 1976;53:759-762.

    Article  PubMed  CAS  Google Scholar 

  56. Schott J-J, Benson DW, Basson CT, et al. Congenital heart disease caused by mutations in the transcription factor NKX2–5. Science. 1998;281:108-111.

    Article  PubMed  CAS  Google Scholar 

  57. Watanabe Y, Benson DW, Yano S, Akagi T, Yoshino M, Murray JC. Two novel frameshift mutations in NKX2.5 result in novel features including visceral inversus and sinus venosus type ASD. J Med Genet. 2002;39:807-811.

    Article  PubMed  CAS  Google Scholar 

  58. Hirayama-Yamada K, Kamisago M, Akimoto K, et al. Phenotypes with GATA4 or NKX2.5 mutations in familial atrial septal defect. Am J Med Genet. 2005;135A:47-52.

    Article  Google Scholar 

  59. Gutierrez-Roelens I, De Roy L, Ovaert C, Sluysmans T, Devriendt K, Brunner HG, Vikkula M. A novel CSX/NKX2–5 mutation causes autosomal-dominant AV block: are atrial fibrillation and syncopes part of the phenotype?

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Jacques Schott .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Schott, JJ. (2011). Hereditary Cardiac Conduction Diseases. In: Baars, H., Doevendans, P., van der Smagt, J. (eds) Clinical Cardiogenetics. Springer, London. https://doi.org/10.1007/978-1-84996-471-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-471-5_17

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-470-8

  • Online ISBN: 978-1-84996-471-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics