Skip to main content

Pulmonary Energy Metabolism and Multiple Inflammatory Repercussions

  • Chapter
  • First Online:
Principles of Pulmonary Protection in Heart Surgery
  • 1028 Accesses

Abstract

Deprivation of pulmonary flow is closely related to several limitations of bronchial flow to ensure effective lung perfusion during cardiopulmonary bypass (CPB). Likewise, ischemia-reperfusion injury is an augmenting factor for lung injury following CPB, and it can compromise pulmonary energy metabolism as well as cause multiple inflammatory repercussions.1,2

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Suzuki T, Fukuda T, Ito T, Inoue Y, Cho Y, Kashima I. Continuous pulmonary perfusion during cardiopulmonary bypass prevents lung injury in infants. Ann Thorac Surg. 2000;69(2):602-606.

    Article  PubMed  CAS  Google Scholar 

  2. Schlensak C, Doenst T, Preusser S, Wunderlich M, Kleinschmidt M, Beyersdorf F. Bronchial artery perfusion during cardiopulmonary bypass does not prevent ischemia of the lung in piglets: assessment of bronchial artery blood flow with fluorescent microspheres. Eur J Cardiothorac Surg. 2001;19(3):326-331. discussion 331–332.

    Article  PubMed  CAS  Google Scholar 

  3. Serraf A, Robotin M, Bonnet N, et al. Alteration of the neonatal pulmonary physiology after total cardiopulmonary bypass. J Thorac Cardiovasc Surg. 1997;114(6):1061-1069.

    Article  PubMed  CAS  Google Scholar 

  4. Kuratani T, Matsuda H, Sawa Y, Kaneko M, Nakano S, Kawashima Y. Experimental study in a rabbit model of ischemia-reperfusion lung injury during cardiopulmonary bypass. J Thorac Cardiovasc Surg. 1992;103:564-568.

    PubMed  CAS  Google Scholar 

  5. Ege T, Huseyin G, Yalcin O, Us MH, Arar C, Duran E. Importance of pulmonary artery perfusion in cardiac surgery. J Cardiothorac Vasc Anesth. 2004;18(2):166-174.

    Article  PubMed  Google Scholar 

  6. Liu Y, Wang Q, Zhu X, et al. Pulmonary artery perfusion with protective solution reduces lung injury after cardiopulmonary bypass. Ann Thorac Surg. 2000;69(5):1402-1407.

    Article  PubMed  CAS  Google Scholar 

  7. Cai H, Harrison DG. Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res. 2000;87(10):840-844. Review.

    Article  PubMed  CAS  Google Scholar 

  8. Shimamoto A, Pohlman TH, Shomura S, Tarukawa T, Takao M, Shimpo H. Toll-like receptor 4 mediates lung ischemia-reperfusion injury. Ann Thorac Surg. 2006;82:2017-2023.

    Article  PubMed  Google Scholar 

  9. Ng CS, Wan S, Yim AP, Arifi AA. Pulmonary dysfunction after cardiac surgery. Chest. 2002;121(4):1269-1277. Review.

    Article  PubMed  Google Scholar 

  10. Chong AJ, Shimamoto A, Hampton CR, et al. Toll-like receptor 4 mediates ischemia/reperfusion injury of the heart. J Thorac Cardiovasc Surg. 2004;128:170-179.

    Article  PubMed  CAS  Google Scholar 

  11. Shimamoto A, Chong AJ, Yada M, et al. Inhibition of toll-like receptor 4 with eritoran attenuates myocardial ischemia-reperfusion injury. Circulation. 2006;114(1 suppl):I270-I274.

    PubMed  Google Scholar 

  12. Wei B, Liu YL, Yu CT, Chang YN, Li CH. Pulmonary artery perfusion with hypothermic solution inhibits the apoptosis of lung parenchymal cells during cardiopulmonary bypass. Zhonghua Wai Ke Za Zhi. 2004;42(4):227-229.

    PubMed  Google Scholar 

  13. Wei B, Liu Y, Wang Q, Chang Y, Li C. Lung protection by perfusion with hypothermic protective solution to pulmonary artery during total correction of tetralogy of Fallot. Zhonghua Wai Ke Za Zhi. 2002;40(9):685-688.

    PubMed  Google Scholar 

  14. Tanita T, Song C, Kubo H, et al. Superoxide anion mediates pulmonary vascular permeability caused by neutrophils in cardiopulmonary bypass. Surg Today. 1999;29(8):755-761.

    Article  PubMed  CAS  Google Scholar 

  15. Gu YJ, Boonstra PW, Graaff R, Rijnsburger AA, Mungroop H, van Oeveren W. Pressure drop, shear stress, and activation of leukocytes during cardiopulmonary bypass: a comparison between hollow fiber and flat sheet membrane oxygenators. Artif Organs. 2000;24(1):43-48.

    Article  PubMed  CAS  Google Scholar 

  16. Faymonville ME, Pincemail J, Duchateau J, et al. Myeloperoxidase and elastase as markers of leukocyte activation during cardiopulmonary bypass in humans. J Thorac Cardiovasc Surg. 1991;102(2):309-317.

    PubMed  CAS  Google Scholar 

  17. Tönz M, Mihaljevic T, von Segesser LK, Fehr J, Schmid ER, Turina MI. Acute lung injury during cardiopulmonary bypass. Are the neutrophils responsible? Chest. 1995;108(6):1551-1556.

    Article  PubMed  Google Scholar 

  18. Martin TR, Pistorese BP, Chi EY, Goodman RB, Matthay MA. Effects of leukotriene B4 in the human lung. Recruitment of neutrophils into the alveolar spaces without a change in protein permeability. J Clin Invest. 1989;84(5):1609-1619.

    Article  PubMed  CAS  Google Scholar 

  19. Serraf A, Sellak H, Hervé P, et al. Vascular endothelium viability and function after total cardiopulmonary bypass in neonatal piglets. Am J Respir Crit Care Med. 1999;159(2):544-551.

    PubMed  CAS  Google Scholar 

  20. Goebel U, Siepe M, Mecklenburg A, et al. Reduced pulmonary inflammatory response during cardiopulmonary bypass: effects of combined pulmonary perfusion and carbon monoxide inhalation. Eur J Cardiothorac Surg. 2008;34(6):1165-1172. Epub 1 Oct 2008.

    Article  PubMed  Google Scholar 

  21. Friedman M, Sellke FW, Wang SY, Weintraub RM, Johnson RG. Parameters of pulmonary injury after total or partial cardiopulmonary bypass. Circulation. 1994;90(5 pt 2):II262-II268.

    PubMed  CAS  Google Scholar 

  22. Farivar AS, Krishnadasan B, Naidu BV, Woolley SM, Verrier ED, Mulligan MS. Endogenous interleukin-4 and interleukin-10 regulate experimental lung ischemia reperfusion injury. Ann Thorac Surg. 2003;76(1):253-259.

    Article  PubMed  Google Scholar 

  23. Huber TS, Gaines GC, Welborn MB III, Rosenberg JJ, Seeger JM, Moldawer LL. Anticytokine therapies for acute inflammation and the systemic inflammatory response syndrome: IL-10 and ischemia/reperfusion injury as a new paradigm. Shock. 2000;13(6):425-434.

    Article  PubMed  CAS  Google Scholar 

  24. Fiorentino DF, Zlotnik A, Mosmann TR, Howard M, O’Garra A. IL-10 inhibits cytokine production by activated macrophages. J Immunol. 1991;147(11):3815-3822.

    PubMed  CAS  Google Scholar 

  25. Hart PH, Vitti GF, Burgess DR, et al. Potential anti-inflammatory effects of interleukin 4: suppression of human monocyte tumor necrosis factor alpha, interleukin one and prostaglandin E2. Proc Natl Acad Sci U S A. 1989;86:3803-3807.

    Article  PubMed  CAS  Google Scholar 

  26. Gu YJ, deVries AJ, Boonstra PW, van Oeveren W. Leukocyte depletion results in improved lung function and reduced inflammatory response after cardiac surgery. J Thorac Cardiovasc Surg. 1996;112:494-500.

    Article  PubMed  CAS  Google Scholar 

  27. Bando K, Pillai R, Cameron DE, et al. Leukocyte depletion ameliorates free radical–mediated lung injury after cardiopulmonary bypass. J Thorac Cardiovasc Surg. 1990;99:873-877.

    PubMed  CAS  Google Scholar 

  28. Al-Ebrahim K, Shafei H. Pall leukocyte depleting filter during cardiopulmonary bypass [letter]. Ann Thorac Surg. 1994;58:1560-1561.

    Article  Google Scholar 

  29. Solis RT, Noon GP, Beall AC, DeBakey ME. Particulate microembolism during cardiac operation. Ann Thorac Surg. 1974;17:332-344.

    Article  PubMed  CAS  Google Scholar 

  30. Orr MD, Ferdman AG, Maresh JG. Removal of avitene microfibrillar collagen hemostat by use of suitable transfusion filters. Ann Thorac Surg. 1994;57:1007-1011.

    Article  PubMed  CAS  Google Scholar 

  31. Joffe SD, Silvay G. The use of microfiltration in cardiopulmonary bypass. J Cardiothorac Anesth. 1994;8:685-692.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edmo Atique Gabriel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer London

About this chapter

Cite this chapter

Gabriel, E.A., Salerno, T. (2010). Pulmonary Energy Metabolism and Multiple Inflammatory Repercussions. In: Gabriel, E., Salerno, T. (eds) Principles of Pulmonary Protection in Heart Surgery. Springer, London. https://doi.org/10.1007/978-1-84996-308-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-308-4_26

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-307-7

  • Online ISBN: 978-1-84996-308-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics