Skip to main content

Abstract

Organic evolution has been essentially linked to oxygen (O2) since it was first introduced in the earth’s atmosphere by photosynthesis of early cyanobacteria species some 2.5 billion years ago. In the steady state (i.e., normoxia), most of the oxygen consumed by a cell is used by mitochondria in the generation of adenosine triphosphate (ATP) via oxidative phosphorylation, providing eukaryotic cells with a highly sophisticated survival advantage. Whereas a total of 38 molecules of ATP are generated per molecule of glucose via oxidative phosphorylation, only 2 are produced via anaerobic metabolism. In fact, more than 90% of the oxygen consumption of the body is used for oxidative phosphorylation. Thus, since the chemical reduction of molecular oxygen is the primary source of metabolic energy for most eukaryotic cells, a constant oxygen supply is critical for continued cell function and survival.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The special symbols in respiratory physiology compiled by Pappenheimer et al.4 are used throughout this chapter.

  2. 2.

    A positive transpulmonary pressure is needed to increase the lung volume.

  3. 3.

    In a healthy subject, the work per liter of ventilation (work per cycle divided by tidal volume) normal value is around 2.4 J/min, with 1 joule (J) the energy needed to move 1 L of gas through a 10-cm H2O pressure gradient.

  4. 4.

    This is because the pleural pressure is lower at the apex than at the base because the weight of the lungs tends to pull it downward, away from the chest wall. If the pleural pressure is decreased, the transpulmonary pressure must be increased, and the alveolar volume increases in this area.

  5. 5.

    If the partial pressure of a gas in the plasma equilibrates with the alveolar partial pressure of the gas within the amount of time the blood is in the pulmonary capillary, its transfer is perfusion limited; if equilibration does not occur within the time the blood is in the capillary, its transfer is diffusion limited.

References

  1. Connett RJ, Honig CR, Gayeski TE, Brooks GA. Defining hypoxia: a systems view of VO2, glycolysis, energetics, and intracellular PO2. J Appl Physiol. 1990;68:833-842.

    PubMed  CAS  Google Scholar 

  2. Nathan AT, Singer M. The oxygen trail: tissue oxygenation. Br Med Bull. 1999;55:96-108.

    Article  PubMed  CAS  Google Scholar 

  3. Wolfe DF, Sorbello JG. Comparison of published pressure gradient symbols and equations in mechanics of breathing. Respir Care. 2006;51:1450-1457.

    PubMed  Google Scholar 

  4. Pappenheimer JR, Comroe JH, Cournand A, et al. Standardization of definitions and symbols in respiratory physiology. Fed Proc. 1950;9:602-605.

    Google Scholar 

  5. Berne RM, Levy M, Koeppen B, Stanton B. Physiology. St Louis: Mosby; 2004.

    Google Scholar 

  6. Wanger J, Clausen JL, Coates A, et al. Standardisation of the measurement of lung volumes. Eur Respir J. 2005;26:511-522.

    Article  PubMed  CAS  Google Scholar 

  7. Knowles JH, Hong SK, Rahn H. Possible errors using esophageal balloon in determination of pressure–volume characteristics of the lung and thoracic cage. J Appl Physiol. 1959;14:525-530.

    Google Scholar 

  8. Coates AL, Peslin R, Rodenstein D, Stocks J. Measurement of lung volumes by plethysmography. Eur Respir J. 1997;10:1415-1427.

    Article  PubMed  CAS  Google Scholar 

  9. Dubois AB, Botelho SY, Bedell GN, Marshall R, Comroe JH Jr. A rapid plethysmographic method for measuring thoracic gas volume: a comparison with a nitrogen washout method for measuring functional residual capacity in normal subjects. J Clin Invest. 1956;35:322-326.

    Article  PubMed  CAS  Google Scholar 

  10. Newth CJ, Enright P, Johnson RL. Multiple-breath nitrogen washout techniques: including measurements with patients on ventilators. Eur Respir J. 1997;10:2174-2185.

    Article  PubMed  CAS  Google Scholar 

  11. Meneely GR, Kaltreider NL. The volume of the lung determined by helium dilution. Description of the method and comparison with other procedures. J Clin Invest. 1949;28:129-139.

    Article  PubMed  CAS  Google Scholar 

  12. Clausen J. Measurement of absolute lung volumes by imaging techniques. Eur Respir J. 1997;10:2427-2431.

    Article  PubMed  CAS  Google Scholar 

  13. Rochester DF. Tests of respiratory muscle function. Clin Chest Med. 1988;9:249-261.

    PubMed  CAS  Google Scholar 

  14. Syabbalo N. Assessment of respiratory muscle function and strength. Postgrad Med J. 1998;74:208-215.

    Article  PubMed  CAS  Google Scholar 

  15. Pacia EB, Aldrich TK. Assessment of diaphragm function. Chest Surg Clin N Am. 1998;8:225-236.

    PubMed  CAS  Google Scholar 

  16. Harik-Khan RI, Wise RA, Fozard JL. Determinants of maximal inspiratory pressure. The Baltimore Longitudinal Study of Aging. Am J Respir Crit Care Med. 1998;158:1459-1464.

    PubMed  CAS  Google Scholar 

  17. Koulouris N, Mulvey DA, Laroche CM, Sawicka EH, Green M, Moxham J. The measurement of inspiratory muscle strength by sniff esophageal, nasopharyngeal, and mouth pressures. Am Rev Respir Dis. 1989;139:641-646.

    PubMed  CAS  Google Scholar 

  18. Cotes JE, Chinn DJ, Miller MR. Lung function. Physiology, measurement and application in medicine. Oxford: Blackwell; 2006.

    Book  Google Scholar 

  19. Escolar JD, Escolar A. Lung hysteresis: a morphological view. Histol Histopathol. 2004;19:159-166.

    PubMed  CAS  Google Scholar 

  20. Mead J, Whittenberg JL, Radford EP Jr. Surface tension as a factor in pulmonary volume–pressure hysteresis. J Appl Physiol. 1957;10:191-196.

    PubMed  CAS  Google Scholar 

  21. Garcia CS, Prota LF, Morales MM, Romero PV, Zin WA, Rocco PR. Understanding the mechanisms of lung mechanical stress. Braz J Med Biol Res. 2006;39:697-706.

    Article  PubMed  CAS  Google Scholar 

  22. Halliday HL. Surfactants: past, present and future. J Perinatol. 2008;28(suppl 1):S47-S56.

    Article  PubMed  CAS  Google Scholar 

  23. Neegaard KV. Neue auffassungen uber einen grundbegriff der atemmechanik. Die retraktionskraft der lunge, abhangig von der oberflachenspannung in den alveolen. Gesund Wohlfahrt. 1948;28:231-260.

    Google Scholar 

  24. Haitsma JJ. Physiology of mechanical ventilation. Crit Care Clin. 2007;23:117–134,vii

    Google Scholar 

  25. Bernhard W, Haagsman HP, Tschernig T, et al. Conductive airway surfactant: surface-tension function, biochemical composition, and possible alveolar origin. Am J Respir Cell Mol Biol. 1997;17:41-50.

    PubMed  CAS  Google Scholar 

  26. Milic-Emili J, Henderson JA, Dolovich MB, Trop D, Kaneko K. Regional distribution of inspired gas in the lung. J Appl Physiol. 1966;21:749-759.

    PubMed  CAS  Google Scholar 

  27. Macklem PT, Macklem DM, De TA. A model of inspiratory muscle mechanics. J Appl Physiol. 1983;55:547-557.

    PubMed  CAS  Google Scholar 

  28. Albaiceta GM, Garcia E, Taboada F. Comparative study of four sigmoid models of pressure–volume curve in acute lung injury. Biomed Eng Online. 2007;6:7.

    Article  PubMed  Google Scholar 

  29. Albaiceta GM, Blanch L, Lucangelo U. Static pressure–volume curves of the respiratory system: were they just a passing fad? Curr Opin Crit Care. 2008;14:80-86.

    Article  PubMed  Google Scholar 

  30. MacIntyre NR. Evidence-based ventilator weaning and discontinuation. Respir Care. 2004;49:830-836.

    PubMed  Google Scholar 

  31. Gibson GJ. Lung volumes and elasticity. Clin Chest Med. 2001;22:623–635,vii

    Google Scholar 

  32. Drummond GB, Milic-Emili J. Forty years of closing volume. Br J Anaesth. 2007;99:772-774.

    Article  PubMed  CAS  Google Scholar 

  33. Grinnan DC, Truwit JD. Clinical review: respiratory mechanics in spontaneous and assisted ventilation. Crit Care. 2005;9:472-484.

    Article  PubMed  Google Scholar 

  34. Roussos C, Macklem PT. The respiratory muscles. N Engl J Med. 1982;307:786-797.

    Article  PubMed  CAS  Google Scholar 

  35. Fenn WO, Rahn H, Otis AB. A theoretical study of the composition of the alveolar air at altitude. Am J Physiol. 1946;146:637-653.

    PubMed  Google Scholar 

  36. Curran-Everett D. A classic learning opportunity from Fenn, Rahn, and Otis (1946): the alveolar gas equation. Adv Physiol Educ. 2006;30:58-62.

    Article  PubMed  Google Scholar 

  37. Glenny RW. Teaching ventilation/perfusion relationships in the lung. Adv Physiol Educ. 2008;32:192-195.

    Article  PubMed  Google Scholar 

  38. Howell JB, Permutt S, Proctor DF, Riley RL. Effect of inflation of the lung on different parts of pulmonary vascular bed. J Appl Physiol. 1961;16:71-76.

    PubMed  CAS  Google Scholar 

  39. Levitzky MG. Pulmonary Physiology. New York: McGraw-Hill; 2007.

    Google Scholar 

  40. Dembinski R, Henzler D, Rossaint R. Modulating the pulmonary circulation: an update. Minerva Anestesiol. 2004;70:239-243.

    PubMed  CAS  Google Scholar 

  41. West JB, Dollery CT, Naimark A. Distribution of blood flow in isolated lung; relation to vascular and alveolar pressures. J Appl Physiol. 1964;19:713-724.

    PubMed  CAS  Google Scholar 

  42. Martin CJ, Marshall H, Cline F Jr. Lobar alveolar gas concentrations; effect of body position. J Clin Invest. 1953;32:617-621.

    Article  PubMed  CAS  Google Scholar 

  43. Harris EA, Seelye ER, Whitlock RM. Gas exchange during exercise in healthy people II. Venous admixture. Clin Sci Mol Med. 1976;51:335-344.

    PubMed  CAS  Google Scholar 

  44. Galvin I, Drummond GB, Nirmalan M. Distribution of blood flow and ventilation in the lung: gravity is not the only factor. Br J Anaesth. 2007;98:420-428.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús Armando Sánchez-Godoy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer London

About this chapter

Cite this chapter

Sánchez-Godoy, J.A. (2010). Respiratory Physiology. In: Gabriel, E., Salerno, T. (eds) Principles of Pulmonary Protection in Heart Surgery. Springer, London. https://doi.org/10.1007/978-1-84996-308-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-308-4_2

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-307-7

  • Online ISBN: 978-1-84996-308-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics