Skip to main content

Current Techniques of Emboli Detection and Their Utility in Brain Protection Studies

  • Chapter
  • First Online:
Brain Protection in Cardiac Surgery

Abstract

The exact etiology of cardiopulmonary bypass (CPB)-associated morbidity and mortality remains unclear and is probably multifactorial resulting from the interactions of a variety of mechanisms: alterations in blood flow, activation of inflammatory processes, temperature manipulations, and emboli. Brain injury, regardless of etiology, can lead to brain edema, further exacerbating the injury.1

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Harris DN, Bailey SM, Smith PL, Taylor KM, Oatridge A, Bydder GM. Brain swelling in first hour after coronary artery bypass surgery [see comments]. Lancet. 1993;342(8871):586-587.

    Article  CAS  PubMed  Google Scholar 

  2. Padayachee TS, Parsons S, Theobold R, Linley J, Gosling RG, Deverall PB. The detection of microemboli in the middle cerebral artery during cardiopulmonary bypass: a transcranial Doppler ultrasound investigation using membrane and bubble oxygenators. Ann Thorac Surg. 1987;44(3):298-302.

    Article  CAS  PubMed  Google Scholar 

  3. Blauth C, Smith P, Newman S, et al. Retinal microembolism and neuropsychological deficit following clinical cardiopulmonary bypass: comparison of a membrane and a bubble oxygenator. A preliminary communication. Eur J Cardio-Thorac Surg. 1989;3(2):135-138. discussion 139.

    Article  CAS  Google Scholar 

  4. Kurusz M. Gaseous microemboli: sources, causes, and clinical considerations. Med Instrument. 1985;19:73-75.

    CAS  Google Scholar 

  5. Clark RE, Brillman J, Davis DA, Lovell MR, Price TR, Magovern GJ. Microemboli during coronary artery bypass grafting. Genesis and effect on outcome [see comments]. J Thorac Cardiovasc Sur. 1995;109(2):249-257. discussion 257-248.

    Article  CAS  Google Scholar 

  6. Pugsley W, Klinger L, Paschalis C, Treasure T, Harrison M, Newman S. The impact of microemboli during cardiopulmonary bypass on neuropsychological functioning. Stroke. 1994;25(7):1393-1399.

    CAS  PubMed  Google Scholar 

  7. Hammon JW Jr, Stump DA, Kon ND, et al. Risk factors and solutions for the development of neurobehavioral changes after coronary artery bypass grafting. Ann Thorac Surg. 1997;63(6):1613-1618.

    Article  PubMed  Google Scholar 

  8. Butler BD, Kurusz M. Embolic Events. In: Gravlee GP, Davis RF, Kurusz M, Utley J, eds. Cardiopulmonary Bypass: Principles and Practice. 2nd ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2000:320-341.

    Google Scholar 

  9. Williams IM. Intravascular changes in the retina during open-heart surgery. Lancet. 1971;2(7726):688-691.

    Article  CAS  PubMed  Google Scholar 

  10. Williams IM. Retinal vascular occlusions in open heart surgery. Brit J Ophthalmol. 1975;59(2):81-91.

    Article  CAS  Google Scholar 

  11. Blauth C, Arnold J, Kohner EM, Taylor KM. Retinal microembolism during cardiopulmonary bypass demonstrated by fluorescein angiography. Lancet. 1986;2(8511):837-839.

    Article  CAS  PubMed  Google Scholar 

  12. Blauth CI, Smith PL, Arnold JV, Jagoe JR, Wootton R, Taylor KM. Influence of oxygenator type on the prevalence and extent of microembolic retinal ischemia during cardiopulmonary bypass Assessment by digital image analysis. J Thorac Cardiovasc Sur. 1990;99(1):61-69.

    CAS  Google Scholar 

  13. Blauth CI, Arnold JV, Schulenberg WE, McCartney AC, Taylor KM. Cerebral microembolism during cardiopulmonary bypass Retinal microvascular studies in vivo with fluorescein angiography. J Thorac Cardiovasc Surg. 1988;95(4):668-676.

    CAS  PubMed  Google Scholar 

  14. Pugsley W. The use of Doppler ultrasound in the assessment of microemboli during cardiac surgery. Perfusion. 1989;4:115-122.

    Article  Google Scholar 

  15. Stump DA, Stein CS, Tegeler CH, et al. Validity and reliability of a device for detecting carotid emboli. J Neuroimag. 1991;1:18-22.

    CAS  Google Scholar 

  16. Deal DD, Stump DA, Brooker MD. Ultrasonic monitoring for emboli in the operating room: errors of detection. J Neuroimag. 1997;7:254 (Abstract).

    Google Scholar 

  17. Trivedi UH, Patel RL, Turtle MR, Venn GE, Chambers DJ. Relative changes in cerebral blood flow during cardiac operations using xenon-133 clearance versus transcranial Doppler sonography [see comments] [published erratum appears in Ann Thorac Surg 1997 Oct;64(4):1228]. Ann Thorac Surg. 1997;63(1):167-174.

    Google Scholar 

  18. van der Linden J, Casimir-Ahn H. When do cerebral emboli appear during open heart operations? A transcranial Doppler study [see comments]. Ann Thorac Surg. 1991;51(2):237-241.

    Article  PubMed  Google Scholar 

  19. Stump DA, Rogers AT, Hammon JW, Newman SP. Cerebral emboli and cognitive outcome after cardiac surgery. J Cardiothorac Vasc Anesth. 1996;10(1):113-118. quiz 118-119.

    Article  CAS  PubMed  Google Scholar 

  20. Yao FS, Barbut D, Hager DN, Trifiletti RR, Gold JP. Detection of aortic emboli by transesophageal echocardiography during coronary artery bypass surgery. J Cardiothorac Vasc Anest. 1996;10(3):314-317.

    Article  CAS  Google Scholar 

  21. Mitchell SJ, Willcox T, McDougal C, Gorman DF. Emboli generation by the Medtronic Maxima hard-shell adult venous reservoir in cardiopulmonary bypass circuits: a preliminary report. Perfusion. 1996;11(2):145-155.

    Article  PubMed  Google Scholar 

  22. Taylor RL, Borger MA, Weisel RD, Fedorko L, Feindel CM. Cerebral microemboli during cardiopulmonary bypass: increased emboli during perfusionist interventions. Ann Thorac Surg. 1999;68(1):89-93.

    Article  CAS  PubMed  Google Scholar 

  23. Duff HJ, Buda AJ, Kramer R, Strauss HD, David TE, Berman ND. Detection of entrapped intracardiac air with intraoperative echocardiography. Am J Cardiol. 1980;46(2):255-260.

    Article  CAS  PubMed  Google Scholar 

  24. Oka Y, Moriwaki KM, Hong Y, et al. Detection of air emboli in the left heart by M-Mode transesophageal echocardiography following cardiopulmonary bypass. Anesthesiology. 1985;63:109-113.

    Article  CAS  PubMed  Google Scholar 

  25. Oka Y, Inoue T, Hong Y, Sisto DA, Strom JA, Frater RW. Retained intracardiac air. Transesophageal echocardiography for definition of incidence and monitoring removal by improved techniques. J Thorac Cardiovasc Surg. 1986;91(3):329-338.

    CAS  PubMed  Google Scholar 

  26. Moody DM, Bell MA, Challa VR, Johnston WE, Prough DS. Brain microemboli during cardiac surgery or aortography [see comments]. Ann Neurol. 1990;28(4):477-486.

    Article  CAS  PubMed  Google Scholar 

  27. Brown WR, Moody DM, Challa VR, Stump DA. Histologic studies of brain microemboli in humans and dogs after cardiopulmonary bypass. Echocard J Cardiovasc Ultra Allied Technol. 1996;13(5):559-565.

    Google Scholar 

  28. Challa VR, Moody DM, Troost BT. Brain embolic phenomena associated with cardiopulmonary bypass. J Neurol Sci. 1993;117(1-2):224-231.

    Article  CAS  PubMed  Google Scholar 

  29. Moody DM, Brown WR, Challa VR, Stump DA, Reboussin DM, Legault C. Brain microemboli associated with cardiopulmonary bypass: a histologic and magnetic resonance imaging study. Ann Thorac Surg. 1995;59(5):1304-1307.

    Article  CAS  PubMed  Google Scholar 

  30. Libman RB, Wirkowski E, Neystat M, Barr W, Gelb S, Graver M. Stroke associated with cardiac surgery. Deter­minants, timing, and stroke subtypes. Arch Neurol. 1997;54(1):83-8.

    CAS  PubMed  Google Scholar 

  31. Aberg T, Ronquist G, Tyden H, et al. Adverse effects on the brain in cardiac operations as assessed by biochemical, psychometric, and radiologic methods. J Thorac Cardiovasc Surg. 1984;87(1):99-105.

    CAS  PubMed  Google Scholar 

  32. Muraoka R, Yokota M, Aoshima M, et al. Subclinical changes in brain morphology following cardiac operations as reflected by computed tomographic scans of the brain. J Thorac Cardiovasc Surg. 1981;81(3):364-369.

    CAS  PubMed  Google Scholar 

  33. Steinberg GK, De La Paz R, Mitchell RS, Bell TE, Albers GW. MR and cerebrospinal fluid enzymes as sensitive indicators of subclinical cerebral injury after open-heart valve replacement surgery. Am J Neuroradiol. 1996;17(2):205-212. discussion 213-205.

    CAS  PubMed  Google Scholar 

  34. Simonson TM, Yuh WT, Hindman BJ, Embrey RP, Halloran JI, Behrendt DM. Contrast MR of the brain after high-perfusion cardiopulmonary bypass. Am J Neuroradiol. 1994;15(1):3-7.

    CAS  PubMed  Google Scholar 

  35. Vik A, Brubakk AO, Rinck PA, Sande E, Levang OW, Sellevold O. MRI: a method to detect minor brain damage following coronary bypass surgery? Neuroradiology. 1991; 33(5):396-398.

    Article  CAS  PubMed  Google Scholar 

  36. Sellman M, Hindmarsh T, Ivert T, Semb BK. Magnetic resonance imaging of the brain before and after open heart operations [see comments]. Ann Thorac Surg. 1992;53(5):807-812.

    Article  CAS  PubMed  Google Scholar 

  37. Marochnik S, Alexandrov AV, Anthone D, Lewin C, Caldwell CB, Pullicino PM. Feasibility of SPECT for studies of brain perfusion during cardiopulmonary bypass. J Neuroimag. 1996;6(4):243-245.

    CAS  Google Scholar 

  38. Krull F, Latta K, Hoyer PF, Ziemer G, Kallfelz HC. Cerebral ultrasonography before and after cardiac surgery in infants. Pediatr Cardiol. Jul-Aug 1994;15(4):159-162.

    Article  CAS  PubMed  Google Scholar 

  39. Stump DA, Kon NA, Rogers AT, Hammon JW. Emboli and neuropsychological outcome following cardiopulmonary bypass. Echocardiography. 1996;13:1.

    Article  Google Scholar 

  40. Schmidt R, Fazekas F, Offenbacher H, et al. Brain magnetic resonance imaging in coronary artery bypass grafts: a pre- and postoperative assessment. Neurology. Apr 1993; 43(4):775-778.

    CAS  PubMed  Google Scholar 

  41. Toner I, Hamid SK, Peden CJ, Taylor KM, Smith PL. Magnetic resonance imaging and P300 (event-related auditory evoked potentials) in the assessment of postoperative cerebral injury following coronary artery bypass graft surgery. Perfusion. 1993;8(4):321-329.

    Article  CAS  PubMed  Google Scholar 

  42. McConnell JR, Fleming WH, Chu WK, et al. Magnetic resonance imaging of the brain in infants and children before and after cardiac surgery. A prospective study [see comments]. Am J Dis Child. 1990;144(3):374-378.

    CAS  PubMed  Google Scholar 

  43. Mintorovitch J, Moseley ME, Chileuitt L, Shimizu H, Cohen Y, Weinstein PR. Comparison of diffusion- and T2-weighted MRI for the early detection of cerebral ischemia and reperfusion in rats. Magn Reson Med. 1991;18(1):39-50.

    Article  CAS  PubMed  Google Scholar 

  44. Moseley ME, Cohen Y, Mintorovitch J, et al. Early detection of regional cerebral ischemia in cats: comparison of diffusion- and T2-weighted MRI and spectroscopy. Magn Reson Med. May 1990;14(2):330-346.

    Article  CAS  PubMed  Google Scholar 

  45. Marks MP, de Crespigny A, Lentz D, Enzmann DR, Albers GW, Moseley ME. Acute and chronic stroke: navigated spin-echo diffusion-weighted MR imaging [published erratum appears in Radiology 1996 Jul;200(1):289]. Radiology. 1996;199(2):403-408.

    Google Scholar 

  46. Lutsep HL, Albers GW, DeCrespigny A, Kamat GN, Marks MP, Moseley ME. Clinical utility of diffusion-weighted magnetic resonance imaging in the assessment of ischemic stroke [see comments]. Ann Neurol. 1997;41(5):574-580.

    Article  CAS  PubMed  Google Scholar 

  47. Warach S, Dashe JF, Edelman RR. Clinical outcome in ischemic stroke predicted by early diffusion-weighted and perfusion magnetic resonance imaging: a preliminary analysis. J Cereb Blood Flow Metab. Jan 1996;16(1):53-59.

    Article  CAS  PubMed  Google Scholar 

  48. Baird DL, Murkin JM, Lee DL. Neurologic findings in coronary artery bypass patients: perioperative or preexisting? J Cardiothorac Vasc Anesth. 1997;11(6):694-698.

    Article  CAS  PubMed  Google Scholar 

  49. Siewert B, Schlaug G, Edelman RR, Warach S. Comparison of EPISTAR and T2*-weighted gadolinium-enhanced perfusion imaging in patients with acute cerebral ischemia. Neurology. Mar 1997;48(3):673-679.

    CAS  PubMed  Google Scholar 

  50. Brant-Zawadzki M, Weinstein P, Bartkowski H, Moseley M. MR imaging and spectroscopy in clinical and experimental cerebral ischemia: a review. Am J Roentgenol. Mar 1987; 148(3):579-588.

    CAS  Google Scholar 

  51. Frahm J, Bruhn H, Gyngell ML, Merboldt KD, Hanicke W, Sauter R. Localized high-resolution proton NMR spectroscopy using stimulated echoes: initial applications to human brain in vivo. Magn Reson Med. Jan 1989;9(1):79-93.

    Article  CAS  PubMed  Google Scholar 

  52. Graham GD, Blamire AM, Howseman AM, et al. Proton magnetic resonance spectroscopy of cerebral lactate and other metabolites in stroke patients. Stroke. Mar 1992;23(3):333-340.

    CAS  PubMed  Google Scholar 

  53. Gillard JH, Barker PB, van Zijl PC, Bryan RN, Oppenheimer SM. Proton MR spectroscopy in acute middle cerebral artery stroke. Am J Neuroradiol. May 1996;17(5):873-886.

    CAS  PubMed  Google Scholar 

  54. Bruhn H, Frahm J, Gyngell ML, Merboldt KD, Hanicke W, Sauter R. Cerebral metabolism in man after acute stroke: new observations using localized proton NMR spectroscopy. Magn Reson Med. Jan 1989;9(1):126-131.

    Article  CAS  PubMed  Google Scholar 

  55. Ehrenhaft JL, Claman MA, Layton JM, Zimmerman GR. Cerebral complications of open-heart surgery. J Thorac Cardiovasc Surg. 1961;41:503-508.

    CAS  PubMed  Google Scholar 

  56. Lindberg DA, Lucas FV, Sheagren J, Malm JR. Silicone embolization during clinical and experimental heart surgery employing a bubble oxygenator. Am J Pathol. 1961;39:129-144.

    CAS  PubMed  Google Scholar 

  57. Miller JA, Fonkalsrud EW, Harrison LL, Maloney JV. Fat embolism associated with extracorporeal circulation and blood transfusion. Surgery. 1962;51:448-451.

    Google Scholar 

  58. Osborn JJ, Swank RL, Hill JD, Aguilar MJ, Gerbode F. Clinical use of a Dacron wool filter during perfusion for open-heart surgery. J Thorac Cardiovasc Surg. 1970;60:575-581.

    CAS  PubMed  Google Scholar 

  59. Loop FD, Szabo J, Rowlinson RD, Urbanek K. Events related to microembolism during extracorporeal perfusion in man: effectiveness of in-line filtration recorded by ultrasound. Ann Thorac Surg. 1976;21:412-420.

    Article  CAS  PubMed  Google Scholar 

  60. Padayachee TS, Parsons S, Theobold R, Gosling RG, Deverall PB. The effect of arterial filtration on reduction of gaseous microemboli in the middle cerebral artery during cardiopulmonary bypass. Ann Thorac Surg. 1988;45(6):647-649.

    Article  CAS  PubMed  Google Scholar 

  61. Whitaker DC, Newman SP, Stygall J, Hope-Wynne C, Harrison MJG, Walesby RK. The effect of leucocyte-depleting arterial line filters on cerebral microemboli and neuropsychological outcome following coronary artery bypass surgery. Eur J Cardio-Thorac Surg. Feb 2004;25(2):267-274.

    Article  Google Scholar 

  62. Perthel M, Kseibi S, Bendisch A, Laas J. Use of a dynamic bubble trap in the arterial line reduces microbubbles during cardiopulmonary bypass and microembolic signals in the middle cerebral artery. Perfusion. May 2005;20(3):151-156.

    Article  PubMed  Google Scholar 

  63. Mitchell SJ, Willcox T, Gorman DF. Bubble generation and venous air filtration by hard-shell venous reservoirs: a comparative study. Perfusion. 1997;12(5):325-333.

    CAS  PubMed  Google Scholar 

  64. Jones TJ, Deal DD, Vernon JC, Blackburn N, Stump DA. How effective are cardiopulmonary bypass circuits at removing gaseous microemboli?[see comment]. J Extra-Corporeal Technol. 2002;34(1):34-39.

    Google Scholar 

  65. Rodriguez RA, Williams KA, Babaev A, Rubens F, Nathan HJ. Effect of perfusionist technique on cerebral embolization during cardiopulmonary bypass. Perfusion. Jan 2005; 20(1):3-10.

    Article  PubMed  Google Scholar 

  66. Borger MA, Peniston CM, Weisel RD, Vasiliou M, Green RE, Feindel CM. Neuropsychologic impairment after coronary bypass surgery: effect of gaseous microemboli during perfusionist interventions. J Thorac Cardiovasc Surg. Apr 2001;121(4):743-749.

    Article  CAS  PubMed  Google Scholar 

  67. Willcox TW, Mitchell SJ, Gorman DF. Venous air in the bypass circuit: a source of arterial line emboli exacerbated by vacuum-assisted drainage. Ann Thorac Surg. 1999; 68(4):1285-1289.

    Article  CAS  PubMed  Google Scholar 

  68. Jones TJ, Deal DD, Vernon JC, Blackburn N, Stump DA. Does vacuum-assisted venous drainage increase gaseous microemboli during cardiopulmonary bypass? Ann Thorac Surg. 2002;74(6):2132-2137.

    Article  PubMed  Google Scholar 

  69. Norman MJ, Sistino JJ, Acsell JR. The effectiveness of low-prime cardiopulmonary bypass circuits at removing gaseous emboli. J Extra-Corp Technol. Dec 2004;36(4):336-342.

    Google Scholar 

  70. Young JA, Kisker CT, Doty DB. Adequate anticoagulation during cardiopulmonary bypass determined by activated clotting time and the appearance of fibrin monomer. Ann Thorac Surg. 1978;26(3):231-240.

    Article  CAS  PubMed  Google Scholar 

  71. Esposito RA, Culliford AT, Colvin SB, Thomas SJ, Lackner H, Spencer FC. The role of the activated clotting time in heparin administration and neutralization for cardiopulmonary bypass. J Thorac Cardiovasc Surg. 1983;85(2):174-185.

    CAS  PubMed  Google Scholar 

  72. Radegran K, Aren C, Teger-Nilsson A. Prostacyclin infusion during extracorporeal circulation for coronary bypass. J Thorac Cardiovasc Surg. 1982;83:205-211.

    CAS  PubMed  Google Scholar 

  73. Longmore DB, Bennett G, Gueirrara D, et al. Prostacyclin: a solution to some problems of extracorporeal circulation. Lancet. 1979;1:1002-1005.

    Article  CAS  PubMed  Google Scholar 

  74. Slogoff S, Girgis KZ, Keats AS. Etiologic factors in neuropsychiatric complications associated with cardiopulmonary bypass. Anesth Analgesia. 1982;61:903-911.

    CAS  Google Scholar 

  75. Nussmeier NA, Arlund C, Slogoff S. Neuropsychiatric complications after cardiopulmonary bypass: cerebral protection by a barbiturate. Anesthesiology. 1986;64(2):165-170.

    Article  CAS  PubMed  Google Scholar 

  76. Newberg LA, Michenfelder JD. Cerebral protection by isoflurane during hypoxemia or ischemia. Anesthesiology. 1983;59:29-35.

    Article  CAS  PubMed  Google Scholar 

  77. Bashein G, Townes BD, Nessly ML, Bledsoe SW, Hornbein TF. Carbon dioxide management during hypothermic cardiopulmonary bypass. Anesthesiology. 1989;71(Suppl 3A):A35.

    Article  Google Scholar 

  78. Patel RL, Turtle MR, Chambers DJ, James DN, Newman S, Venn GE. Alpha-stat acid-base regulation during cardiopulmonary bypass improves neuropsychologic outcome in patients undergoing coronary artery bypass grafting [see comments]. J Thorac Cardiovasc Surg. 1996;111(6):1267-1279.

    Article  CAS  PubMed  Google Scholar 

  79. Henriksen L, Hjelms E, Lindeburgh T. Brain hyperperfusion during cardiac operations. J Thorac Cardiovasc Surg. 1983;86:202-208.

    CAS  PubMed  Google Scholar 

  80. Davila-Roman VG, Barzilai B, Wareing TH, Murphy SF, Schechtman KB, Kouchoukos NT. Atherosclerosis of the ascending aorta. Prevalence and role as an independent predictor of cerebrovascular events in cardiac patients. Stroke. 1994;25(10):2010-2016.

    CAS  PubMed  Google Scholar 

  81. Wareing TH, Davila-Roman VG, Barzilai B, Murphy SF, Kouchoukos NT. Management of the severely atherosclerotic ascending aorta during cardiac operations. A strategy for detection and treatment. J Thorac Cardiovasc Surg. 1992;103(3):453-462.

    CAS  PubMed  Google Scholar 

  82. Davila-Roman VG, Phillips KJ, Daily BB, Davila RM, Kouchoukos NT, Barzilai B. Intraoperative transesophageal echocardiography and epiaortic ultrasound for assessment of atherosclerosis of the thoracic aorta. J Am Coll Cardiol. 1996;28(4):942-947.

    Article  CAS  PubMed  Google Scholar 

  83. Culliford AT, Colvin SB, Rohrer K, Baumann FG, Spencer FC. The atherosclerotic ascending aorta and transverse arch: a new technique to prevent cerebral injury during bypass: experience with 13 patients. Ann Thorac Surg. 1986;41(1):27-35.

    Article  CAS  PubMed  Google Scholar 

  84. Borger MA, Taylor RL, Weisel RD, et al. Decreased cerebral emboli during distal aortic arch cannulation: a randomized clinical trial. J Thorac Cardiovasc Surg. 1999;118(4):740-745.

    Article  CAS  PubMed  Google Scholar 

  85. Hammon JW, Stump DA, Butterworth JF, et al. Coronary artery bypass grafting with single cross-clamp results in fewer persistent neuropsychological deficits than multiple clamp or off-pump coronary artery bypass grafting. Ann Thorac Surg. Oct 2007;84(4):1174-1178. discussion 1178-1179.

    Article  PubMed  Google Scholar 

  86. Brooker RF, Brown WR, Moody DM, et al. Cardiotomy suction: a major source of brain lipid emboli during cardiopulmonary bypass. Ann Thorac Surg. 1998;65(6):1651-1655.

    Article  CAS  PubMed  Google Scholar 

  87. Kincaid EH, Jones TJ, Stump DA, et al. Processing scavenged blood with a cell saver reduces cerebral lipid microembolization. Ann Thorac Surg. 2000;70(4):1296-1300.

    Article  CAS  PubMed  Google Scholar 

  88. Djaiani G, Fedorko L, Borger MA, et al. Continuous-flow cell saver reduces cognitive decline in elderly patients after coronary bypass surgery [see comment]. Circulation. Oct 23 2007;116(17):1888-1895.

    Article  PubMed  Google Scholar 

  89. Rubens FD, Boodhwani M, Mesana T, et al. The cardiotomy trial: a randomized, double-blind study to assess the effect of processing of shed blood during cardiopulmonary bypass on transfusion and neurocognitive function. Circulation. Sep 11 2007;116(11):I89-97.

    Article  PubMed  Google Scholar 

  90. Walpoth BH, Eggensperger N, Hauser SP, et al. Effects of unprocessed and processed cardiopulmonary bypass blood retransfused into patients after cardiac surgery. Int J Art Organs. 1999;22(4):210-216.

    CAS  Google Scholar 

  91. Boodhwani M, Nathan HJ, Mesana TG, Rubens FD, Cardiotomy I. Effects of shed mediastinal blood on cardiovascular and pulmonary function: a randomized, double-blind study. Ann Thorac Surg. October 1, 2008;86(4):1167-1173.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil K. Bhudia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer London

About this chapter

Cite this chapter

Bhudia, S.K., Stump, D.A., Jones, T.J. (2011). Current Techniques of Emboli Detection and Their Utility in Brain Protection Studies. In: Bonser, R., Pagano, D., Haverich, A. (eds) Brain Protection in Cardiac Surgery. Springer, London. https://doi.org/10.1007/978-1-84996-293-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-293-3_9

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-292-6

  • Online ISBN: 978-1-84996-293-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics