Skip to main content

Pitfalls of Neuropsychometric Assessment and Alternative Investigative Approaches

  • Chapter
  • First Online:
Brain Protection in Cardiac Surgery

Abstract

Advances in surgical and anesthetic techniques over the last two decades have led to a reduction in the overall mortality following cardiac surgery despite the fact that older patients with more comorbidities constitute an increasing proportion of the surgical population. This reduction in mortality has not been paralleled by a reduction in neurocognitive dysfunction as older patients are potentially more susceptible to all forms of cerebral injury.1

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Taggart DP, Westaby S. Neurological and cognitive disorders after coronary artery bypass grafting. Curr Opin Cardiol. 2001;16(5):271-276.

    Article  CAS  PubMed  Google Scholar 

  2. van Dijk D et al. Neurocognitive dysfunction after coronary artery bypass surgery: a systematic review. J Thorac Cardiovasc Surg. 2000;120(4):632-639.

    Article  PubMed  Google Scholar 

  3. Taggart DP et al. Is cardiopulmonary bypass still the cause of cognitive dysfunction after cardiac operations? J Thorac Cardiovasc Surg. 1999;118(3):414-420, discussion 420-421.

    Article  CAS  PubMed  Google Scholar 

  4. Anyanwu AC et al. Epidemiology of stroke after cardiac surgery in the current era. J Thorac Cardiovasc Surg. 2007;134(5):1121-1127.

    Article  PubMed  Google Scholar 

  5. Sedrakyan A et al. Off-pump surgery is associated with reduced occurrence of stroke and other morbidity as compared with traditional coronary artery bypass grafting: a meta-analysis of systematically reviewed trials. Stroke. 2006;37(11):2759-2769.

    Article  PubMed  Google Scholar 

  6. Newman MF et al. Report of the substudy assessing the impact of neurocognitive function on quality of life 5 years after cardiac surgery. Stroke. 2001;32(12):2874-2881.

    Article  CAS  PubMed  Google Scholar 

  7. Murkin JM et al. Statement of consensus on assessment of neurobehavioral outcomes after cardiac surgery. Ann Thorac Surg. 1995;59(5):1289-1295.

    Article  CAS  PubMed  Google Scholar 

  8. Blumenthal JA et al. Methodological issues in the assessment of neuropsychologic function after cardiac surgery. Ann Thorac Surg. 1995;59(5):1345-1350.

    Article  CAS  PubMed  Google Scholar 

  9. Murkin JM et al. Defining dysfunction: group means versus incidence analysis – a statement of consensus. Ann Thorac Surg. 1997;64(3):904-905.

    Article  CAS  PubMed  Google Scholar 

  10. Mahanna EP et al. Defining neuropsychological dysfunction after coronary artery bypass grafting. Ann Thorac Surg. 1996;61(5):1342-1347.

    Article  CAS  PubMed  Google Scholar 

  11. Vingerhoets G, Van Nooten G, Jannes C. Neuropsychological impairment in candidates for cardiac surgery. J Int Neuropsychol Soc. 1997;3(5):480-484.

    CAS  PubMed  Google Scholar 

  12. Browne SM et al. Cognitive performance after cardiac operation: implications of regression toward the mean. J Thorac Cardiovasc Surg. 1999;117(3):481-485.

    Article  CAS  PubMed  Google Scholar 

  13. Van Dijk D et al. Cognitive outcome after off-pump and on-pump coronary artery bypass graft surgery: a randomized trial. JAMA. 2002;287(11):1405-1412.

    Article  PubMed  Google Scholar 

  14. Keizer AM et al. The incidence of cognitive decline after (not) undergoing coronary artery bypass grafting: the impact of a controlled definition. Acta Anaesthesiol Scand. 2005;49(9):1232-1235.

    Article  CAS  PubMed  Google Scholar 

  15. van Dijk D et al. Cognitive outcomes five years after not undergoing coronary artery bypass graft surgery. Ann Thorac Surg. 2008;85(1):60-64.

    Article  PubMed  Google Scholar 

  16. Selnes OA et al. Cognitive changes with coronary artery disease: a prospective study of coronary artery bypass graft patients and nonsurgical controls. Ann Thorac Surg. 2003;75(5):1377-1384, discussion 1384-1386.

    Article  PubMed  Google Scholar 

  17. Selnes OA et al. Cognitive outcomes three years after coronary artery bypass surgery: a comparison of on-pump coronary artery bypass graft surgery and nonsurgical controls. Ann Thorac Surg. 2005;79(4):1201-1209.

    Article  PubMed  Google Scholar 

  18. McKhann GM et al. Is there cognitive decline 1 year after CABG?Comparison with surgical and nonsurgical controls. Neurology. 2005;65(7):991-999.

    Article  CAS  PubMed  Google Scholar 

  19. Keith JR, Cohen DJ, Lecci LB. Why serial assessments of cardiac surgery patients’ neurobehavioral performances are misleading. Ann Thorac Surg. 2007;83(2):370-373.

    Article  PubMed  Google Scholar 

  20. Selnes OA, Zeger SL. Coronary artery bypass grafting baseline cognitive assessment: essential not optional. Ann Thorac Surg. 2007;83(2):374-376.

    Article  PubMed  Google Scholar 

  21. Abu-Omar Y et al. Short-term changes in cerebral activity in on-pump and off-pump cardiac surgery defined by functional magnetic resonance imaging and their relationship to microembolization. J Thorac Cardiovasc Surg. 2006;132(5):1119-1125.

    Article  PubMed  Google Scholar 

  22. Abu-Omar Y et al. The role of microembolisation in cerebral injury as defined by functional magnetic resonance imaging. Eur J Cardiothorac Surg. 2004;26(3):586-591.

    Article  PubMed  Google Scholar 

  23. Jezzard P, Matthews PM, Smith SS. Functional MRI: an introduction to methods. Oxford: Oxford University Press; 2001.

    Google Scholar 

  24. Ogawa S et al. Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model. Biophys J. 1993;64(3):803-812.

    Article  CAS  PubMed  Google Scholar 

  25. Attwell D, Laughlin SB. An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab. 2001;21(10):1133-1145.

    Article  CAS  PubMed  Google Scholar 

  26. Attwell D, Iadecola C. The neural basis of functional brain imaging signals. Trends Neurosci. 2002;25(12):621-625.

    Article  CAS  PubMed  Google Scholar 

  27. Ogawa S et al. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA. 1990;87(24):9868-9872.

    Article  CAS  PubMed  Google Scholar 

  28. Logothetis NK. The underpinnings of the BOLD functional magnetic resonance imaging signal. J Neurosci. 2003;23(10):3963-3971.

    CAS  PubMed  Google Scholar 

  29. Matthews PM, Clare S, Adcock J. Functional magnetic resonance imaging: clinical applications and potential. J Inherit Metab Dis. 1999;22(4):337-352.

    Article  CAS  PubMed  Google Scholar 

  30. Grocott HP et al. Genetic polymorphisms and the risk of stroke after cardiac surgery. Stroke. 2005;36(9):1854-1858.

    Article  CAS  PubMed  Google Scholar 

  31. Tardiff BE et al. Preliminary report of a genetic basis for cognitive decline after cardiac operations. The Neurologic Outcome Research Group of the Duke Heart Center. Ann Thorac Surg. 1997;64(3):715-720.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasir Abu-Omar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer London

About this chapter

Cite this chapter

Abu-Omar, Y., Taggart, D.P. (2011). Pitfalls of Neuropsychometric Assessment and Alternative Investigative Approaches. In: Bonser, R., Pagano, D., Haverich, A. (eds) Brain Protection in Cardiac Surgery. Springer, London. https://doi.org/10.1007/978-1-84996-293-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-293-3_7

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-292-6

  • Online ISBN: 978-1-84996-293-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics