Skip to main content

Neurocognitive Decline Following Cardiac Surgery: Incidence, Risk Factors, Prevention, and Outcomes

  • Chapter
  • First Online:
Brain Protection in Cardiac Surgery

Abstract

As outcomes from cardiac surgery have been more carefully studied, it is clear that even subtle neurological damage can produce unacceptable declines in physical and social function. Because the brain is such a complex organ, even small injuries may produce symptomatic, functional losses that would not be detectable or important in other organs. Regional hypoperfusion, edema, microemboli, circulating cytotoxins, or subtle changes in blood glucose, insulin, or calcium may result in changes in cognitive function, ranging from subtle to profound. A small 2-mm infarct may cause a disruption of behavioral patterns, physiologic and physical function changes can pass unnoticed, be accepted and dismissed, or profoundly compromise the patient’s quality of life. Move the lesion half a centimeter and the same volume lesion may result in a catastrophic stroke. Thus, the brain is the most sensitive organ exposed to damage by cardiac surgery and also the organ that, with the heart, is most important to protect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shaw PJ et al. Long-term intellectual dysfunction following coronary artery bypass surgery: a six month follow-up study. J Med. 1987;62:259-268.

    CAS  Google Scholar 

  2. Newman S. The incidence and nature of neuropsychological morbidity following cardiac surgery. Perfusion. 1989;4:93-100.

    Article  Google Scholar 

  3. Svensson LG, Nadolny EM, Kimmel WA. Multimodal protocol influence on stroke and neurocognitive deficit prevention after ascending/arch aortic operations. Ann Thorac Surg. 2002;74:240-246.

    Article  Google Scholar 

  4. Newman S, Smith P, Treasure T, et al. Acute neuropsychological consequences of coronary artery bypass surgery. Curr Psychol Res Rev. 1987;6:115-124.

    Article  Google Scholar 

  5. Murkin JM, Stump DA, Blumenthal JA, et al. Defining dysfunction: group means versus incidence analysis-a statement of consensus. Ann Thorac Surg. 1997;64:904-905.

    Article  CAS  PubMed  Google Scholar 

  6. Selnes OA, Grega MA, Bailey MM, et al. Neurocognitive outcomes 3 years after coronary artery bypass graft surgery: a controlled study. Ann Thorac Surg. 2007;84:1885-1896.

    Article  PubMed  Google Scholar 

  7. Blumenthal JA, Mahanna EP, Madden DJ, et al. Methodo­logical issues in the assessment of neuropsychological function after cardiac surgery. Ann Thorac Surg. 1995;59:1345-1350.

    Article  CAS  PubMed  Google Scholar 

  8. Stump DA. Selection and clinical significance of neuropsychologic tests. Ann Thorac Surg. 1995;59:1340-1344.

    Article  CAS  PubMed  Google Scholar 

  9. Stump DA, Rogers AT, Hammon JW. Neurobehavioral tests are monitoring tools used to improve cardiac surgery outcome. Ann Thorac Surg. 1996;61:1295-1296.

    Article  CAS  PubMed  Google Scholar 

  10. Das RR, Seshadri S, Beiser AS, et al. Prevalence and correlates of silent cerebral infarcts in the Framingham offspring study. Stroke. 2008;39:2929-2935.

    Article  PubMed  Google Scholar 

  11. Baird A, Benfield A, Schlaug G, et al. Enlargement of human cerebral ischemic lesion volumes measured by diffusion-weighted magnetic resonance imaging. Ann Neurol. 1997;41:581-589.

    Article  CAS  PubMed  Google Scholar 

  12. Bendszus M, Reents W, Franke D, et al. Brain damage after coronary artery bypass grafting. Arch Neurol. 2002;59:1090-1095.

    Article  PubMed  Google Scholar 

  13. Vermeer SE, Longstreth WT Jr, Koudstaal PJ. Silent brain infarcts: a systematic review. Lancet Neurol. 2007;6:611-619.

    Article  PubMed  Google Scholar 

  14. Kohn A. Magnetic resonance imaging registration and quantitification of the brain before and after coronary artery bypass graft surgery. Ann Thorac Surg. 2002;73:5363-5365.

    Article  Google Scholar 

  15. Shaw PJ, Bates D, Cartlidge NE, et al. Neurologic and neuropsychological morbidity following: major surgery: comparison of coronary artery bypass and peripheral vascular surgery. Stroke. 1987;18:700-707.

    CAS  PubMed  Google Scholar 

  16. Gardner TJ, Horneffer PJ, Manolio TA, et al. Stroke following coronary artery bypass surgery: a ten year study. Ann Thorac Surg. 1985;40:574-581.

    Article  CAS  PubMed  Google Scholar 

  17. Moller JT, Cluitmans P, Rasmussen LS, et al. Long-term postoperative cognitive dysfunction in the elderly ISPOCD study. ISPOCD investigators, International Study of Post-Operative Cognitive Dysfunction. Lancet. 1998;351:857-861.

    Article  CAS  PubMed  Google Scholar 

  18. Jones EL, Weintraub WS, Craver JM, et al. Coronary bypass surgery: is the operation different today? J Thorac Cardiovasc Surg. 1991;101:108-115.

    CAS  PubMed  Google Scholar 

  19. Tardiff BE, Newman MF, Saunders AM, et al. Preliminary report of a genetic basis for cognitive decline after cardiac operations. Ann Thorac Surg. 1997;64:715-720.

    Article  CAS  PubMed  Google Scholar 

  20. Roach GW, Kanchugar M, Mangano CM, et al. Adverse cerebral outcomes after coronary bypass surgery: multicenter study of perioperative ischemia research groups and the ischemia research and education foundation investigators. N Engl J Med. 1996;335:1857-1863.

    Article  CAS  PubMed  Google Scholar 

  21. Weintraub WS, Wenger NK, Jones EL, et al. Changing clinical characteristics of coronary surgery patients: differences between men and women. Circulation. 1993;88:79-86.

    Google Scholar 

  22. Goto T, Baba T, Yoshitake A, et al. Craniocervical and aortic atherosclerosis as neurologic risk factors in coronary surgery. Ann Thorac Surg. 2000;69:834-840.

    Article  CAS  PubMed  Google Scholar 

  23. Wareing TH, Davila-Roman VG, Daily BB, et al. Strategy for the reduction of stroke incidence in cardiac surgical patients. Ann Thorac Surg. 1993;55:1400-1408.

    Article  CAS  PubMed  Google Scholar 

  24. Stump DA, Kon NA, Rogers AT, et al. Emboli neuropsychologic outcome following cardiopulmary bypass. Echocardio­graphy. 1996;13:555-558.

    Article  PubMed  Google Scholar 

  25. Tuman KJ, McCarthy RJ, Najafi H, et al. Differential effects of advanced age on neurologic and cardiac risks of coronary operations. J Thorac Cardiovasc Surg. 1992;104:1510-1517.

    CAS  PubMed  Google Scholar 

  26. Lata A, Stump D, Deal D, et al.: Cannula design reduces particulate and gaseous emboli during cardiopulmonary bypass for coronary revascularization. J Cardiac Surg. (in press).

    Google Scholar 

  27. Jones TJ, Stump DA, Deal D, et al. Hypothermia protects the brain from embolization by reducing and redirecting the embolic load. Ann Thorac Surg. 1999;68:1465.

    Article  Google Scholar 

  28. Gold JP, Charlson ME, Williams-Russo P. Improvement of outcomes after coronary artery bypass; a randomized trial comparing high verus low mean arterial pressure. J Thorac Cardiovasc Surg. 1995;110:1302-1314.

    Article  CAS  PubMed  Google Scholar 

  29. Murkin JM, Farrar JK, Tweed WA, et al. Cerebral autoregulation and flow/metabolism coupling during cardiopulmonary bypass: the role of PaCO2. Anesth Analg. 1987;66:665-672.

    Google Scholar 

  30. Hill AG, Groom RC, Tewksbury L, et al. Sources of gaseous microemboli during cardiopulmonary bypass. Proc Am Acad Cardiovasc Perfus. 1998;9:122-130.

    Google Scholar 

  31. Blauth CI. Macroemboli and microemboli during cardiopulmonary bypass. Ann Thorac Surg. 1995;59:1300-1303.

    Article  CAS  PubMed  Google Scholar 

  32. Stump DA, Brown WR, Moody DM, et al. Microemboli and neurologic dysfunction after cardiovascular surgery. Semin Cardiothorac Vascular Anesth. 1999;3:47-54.

    Article  Google Scholar 

  33. Helps SC, Parsons DW, Reilly PL, et al. The effect of gas emboli on rabbit cerebral blood flow. Stroke. 1990;21:94-99.

    CAS  PubMed  Google Scholar 

  34. Moody DM, Brown WR, Challa VR, et al. Efforts to characterize the nature and chronicle the occurrence of brain emboli during cardiopulmonary bypass. Perfusion. 1995;9:316-417.

    Google Scholar 

  35. Cook DJ, Oliver WC, Orsulak TA, et al. Cardiopulmonary bypass temperature, hematocrit, and cerebral oxygen delivery in humans. Ann Thorac Surg. 1995;60:1671-1677.

    Article  CAS  PubMed  Google Scholar 

  36. Martin TC, Craver JM, Gott MP, et al. Prospective, randomized trial of retrograde warm-blood cardioplegia: myocardial benefit and neurological threat. Ann Thorac Surg. 1994;59:298-304.

    Article  Google Scholar 

  37. Engelman RM, Pleet AB, Rouson JA, et al. What is the best perfusion temperature for coronary revascularization? J Thorac Cardiovasc Surg. 1996;112:1622-1633.

    Article  CAS  PubMed  Google Scholar 

  38. Avraamides EJ, Murkin JM. The effect of surgical dislocation of the heart on cerebral blood flow in the presence of a single, two-stage venous cannula during cardiopulmonary bypass. Can J Anaesth. 1996;43:A36.

    Google Scholar 

  39. Downing SW, Edmunds LH Jr. Release of vasoactive substances during cardiopulmonary bypass. Ann Thorac Surg. 1992;54:1236-1243.

    Article  CAS  PubMed  Google Scholar 

  40. Warren JS, Ward PA. The inflammatory response. In: Beutler E, Coller BS, Lichtman MA, et al., eds. Williams Hematology. 6th ed. New York: McGraw-Hill; 2001:67.

    Google Scholar 

  41. Wewers MD. Cytokines and macrophages. In: Remick DG, Friedland JS, eds. Cytokines in Health and Disease. 2nd ed. New York: Marcel Dekker; 339.

    Google Scholar 

  42. Fantone JC. Cytokines and neutrophils: neutrophil-derived cytokines and the inflammatory response. In: Remick DG, Friedland JS, eds. Cytokines in Health and Disease. 2nd ed. New York: Marcel Dekker; 1997:373.

    Google Scholar 

  43. Kincaid EH, Jones TJ, Stump DA, et al. Processing scavenged blood with a cell saver reduces cerebral lipid microembolization. Ann Thorac Surg. 2000;70:1296-1300.

    Article  CAS  PubMed  Google Scholar 

  44. Reichenspurner H, Navia JA, Benny G, et al. Particulate embolic capture by an intra-aortic filter device during cardiac surgery. J Thorac Cardiovasc Surg. 2000;119:233-244.

    Article  CAS  PubMed  Google Scholar 

  45. Cook DJ, Zehr KJ, Orszulak TA, Slater JM. Profound reduction in brain embolization using an endoaortic baffle during bypass in swine. Ann Thorac Surg. 2002;73:198-202.

    Article  PubMed  Google Scholar 

  46. Barzilai B, Marshall WG Jr, Saffitz Je, et al. Avoidance of embolic complications by ultrasonic characterization of the ascending aorta. Circulation. 1980;80:1275-1279.

    Google Scholar 

  47. Macoviak JA, Hwang J, Boerjan KL, Deal DD. Comparing dual-stream and standard cardiopulmonary bypass in pigs. Ann Thorac Surg. 2002;73:203-208.

    Article  PubMed  Google Scholar 

  48. Hammon JW, Stump DA, Butterworth JE, et al. Single cross clamp improves six month cognitive outcome in high risk coronary bypass patients. J Thorac Cardiovasc Surg. 2006;131:114-121.

    Article  PubMed  Google Scholar 

  49. Loop FD, Higgins TL, Panda R, et al. Myocardial protection during cardiac operations: decreased morbidity and lower cost with blood cardioplegia and coronary sinus perfusion. J Cardiovasc Surg. 1992;104:608-618.

    CAS  Google Scholar 

  50. Sundt TM, Barner HB, Camillo CJ, et al. Total arterial revascularization with an internal thoracic artery and radial artery T graft. Ann Thorac Surg. 1999;68:399-405.

    Article  PubMed  Google Scholar 

  51. Tector AJ, Amundsen S, Schmahl TM, et al. Total revascularization with T grafts. Ann Thorac Surg. 1994;57:33-39.

    Article  CAS  PubMed  Google Scholar 

  52. Jones TJ, Deal DD, Vernon JC, et al. The propagation of entrained air during cardiopulmonary bypass is affected by circuit design but not by vacuum assisted venous drainage. Ann Thorac Surg. 2002;74:2132-2137.

    Article  PubMed  Google Scholar 

  53. Nathan HJ, Wells GA, Munson JL, Wozny D. Neuroprotective effect of mild hypothermia in patients undergoing coronary artery surgery with cardiopulmonary bypass. Circulation. 2001;104(I):I-85-I-95.

    Article  CAS  Google Scholar 

  54. Brown R, Wright G, Royston D. A comparison of two systems for assessing cerebral venous oxyhaemoglobin saturation during cardiopulmonary bypass in humans. Anaethesia. 1993;48:697-700.

    Article  CAS  Google Scholar 

  55. Michenfelder JD. The interdependency of cerebral functional and metabolic effects following massive doses of thiopental in the dog. Anesthesiology. 1974;41:231-236.

    Article  CAS  PubMed  Google Scholar 

  56. Nussmeier N, Arlund C, Slogoff S. Neuropsychiatric complications after cardiopulmonary bypass: cerebral protection by a barbiturate. Anesthesiology. 1986;64:165-170.

    Article  CAS  PubMed  Google Scholar 

  57. Shum-Tim D, Tchervenkov CI, Jamal AM, et al. Systemic steroid pretreatment improves cerebral protection after circulatory arrest. Ann Thorac Surg. 2001;72:1615-1620.

    Article  PubMed  Google Scholar 

  58. Arrowsmith JE, Harrison MJG, Newman SP, et al. Neuroprotection of the brain during cardiopulmonary bypass: a randomized trial of remacemide during coronary artery bypass in 171 patients. Stroke. 1998;29:2357-2362.

    CAS  PubMed  Google Scholar 

  59. Mitchell SJ, Pellet O, Gorman DF, et al. Cerebral protection by lidocaine during cardiac operations. Ann Thorac Surg. 1999;67:1117-1124.

    Article  CAS  PubMed  Google Scholar 

  60. Diegeler A, Hirsch R, Schneider F, et al. Neuromonitoring and neurocognitive outcome in off-pump versus conventional coronary bypass operation. Ann Thorac Surg. 2000;69:1162-1166.

    Article  CAS  PubMed  Google Scholar 

  61. Puskas J, Cheng D, Knight J, et al. Off-pump versus conventional coronary artery bypass grafting: a meta-analysis and consensus statement from the 2004 ISMICS consensus conference. Innovations Cardiothorac Surg. 2005;1:3-27.

    Google Scholar 

  62. Newman MF, Kirchner JL, Phillips-Bute B, et al. Longitudinal assessment of neurocognitive function after coronary artery bypass grafting. N Engl J Med. 2001;344:395-402.

    Article  CAS  PubMed  Google Scholar 

  63. Sotaniemi KA. Cerebral outcome after extracorporeal circulation: comparison between prospective and retrospective evaluations. Arch Neurol. 1983;40:75-77.

    CAS  PubMed  Google Scholar 

  64. Hammon JW, Stump DA, Butterworth JE, et al. CABG with single cross clamp results in fewer persistent neuropsychological deficits than multiple clamp or OPCAB. Ann Thorac Surg. 2007;84:1174-1179.

    Article  PubMed  Google Scholar 

  65. Selnes OA, Grega MA, Bailey MM, et al. Do management strategies for coronary artery disease influence 6-year cognitive outcomes? Ann Thorac Surg. 2009;88:445-454.

    Article  PubMed  Google Scholar 

  66. Mullges W, Babin-Ebell J, Reents W, Toyka KV. Cognitive performance after coronary bypass grafting: a follow-up study. Neurology. 2002;59:741-743.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John W. Hammon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer London

About this chapter

Cite this chapter

Hammon, J.W., Stump, D.A. (2011). Neurocognitive Decline Following Cardiac Surgery: Incidence, Risk Factors, Prevention, and Outcomes. In: Bonser, R., Pagano, D., Haverich, A. (eds) Brain Protection in Cardiac Surgery. Springer, London. https://doi.org/10.1007/978-1-84996-293-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-293-3_4

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-292-6

  • Online ISBN: 978-1-84996-293-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics