Skip to main content

Near-Infrared Spectroscopy Monitoring in Cardiac Surgery: Theory, Practice, and Utility

  • Chapter
  • First Online:
Brain Protection in Cardiac Surgery

Abstract

Patients undergoing cardiac surgical procedures are at increased risk of central nervous system (CNS) complications from a variety of causes. The increase in age and associated incidence of comorbidities give rise to significant cerebrovascular disease in upwards of 50% of adult cardiac surgical patients, rendering them more susceptible to cerebral ischemic events.1,2 In specific circumstances, for example, selective cerebral perfusion (SCP), or even more generally, during cardiac surgery, relative cerebral hypoperfusion can engender cerebral ischemia and negatively impact outcome. As such, the ability to monitor and optimize cerebral perfusion in real time represents an important development.

Adapted from Murkin JM, Arango M. Near-infrared spectroscopy as an index of brain and tissue oxygenation. Br J Anaesth 2009; 103 (suppl 1) i3–i13.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Uehara T, Tabuchi M, Kozawa S, Mori E. MR angiographic evaluation of carotid and intracranial arteries in Japanese patients scheduled for coronary artery bypass grafting. Cerebrovasc Dis. 2001;11(4):341-345.

    Article  CAS  PubMed  Google Scholar 

  2. Yoon BW, Bae HJ, Kang DW, et al. Intracranial cerebral artery disease as a risk factor for central nervous system complications of coronary artery bypass graft surgery. Stroke. 2001;32:94-99.

    CAS  PubMed  Google Scholar 

  3. Josbis FF. Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science. 1977;198:1264-1267.

    Article  Google Scholar 

  4. Ferrari M, Giannini I, Sideri G, Zanette E. Continuous non invasive monitoring of human brain by near infrared spectroscopy. Adv Exp Med Biol. 1985;191:873-882.

    CAS  PubMed  Google Scholar 

  5. McCormick PW, Stewart M, Goetting MG, et al. Noninvasive cerebral optical spectroscopy for monitoring cerebral oxygen delivery and hemodynamics. Crit Care Med. 1991;19:89-97.

    Article  CAS  PubMed  Google Scholar 

  6. Matcher SJ, Cope M, Delpy DT. Use of the water absorption spectrum to quantify tissue chromophore concentration changes in near-infrared spectroscopy. Phys Med Biol. 1994 Jan;39(1):177-196.

    Article  CAS  PubMed  Google Scholar 

  7. Lakowicz JR, Berndt K. Frequency-domain measurements of photon migration in tissues. Chem Phys Lett. 1990;166:246-252.

    Article  CAS  Google Scholar 

  8. Kurth CD, Thayer WS. A multiwavelength frequency-domain near-infrared cerebral oximeter. Phys Med Biol. 1990;44:727-740.

    Article  Google Scholar 

  9. Germon TJ, Evans PD, Barnett NJ, Wall P, Manara AR, Nelson RJ. Cerebral near infrared spectroscopy: emitter-detector separation must be increased. Br J Anaesth. 1999;82(6):831-837.

    CAS  PubMed  Google Scholar 

  10. Ohmae E, Ouchi Y, Oda M, et al. Cerebral hemodynamics evaluation by near-infrared time-resolved spectroscopy: correlation with simultaneous positron emission tomography measurements. Neuroimage. 2006 Feb 1;29(3):697-705.

    Article  PubMed  Google Scholar 

  11. Watzman HM, Kurth CD, Montenegro LM, Rome J, Steven JM, Nicolson SC. Arterial and venous contributions to near-infrared cerebral oximetry. Anesthesiology. 2000 Oct;93(4):947-953.

    Article  CAS  PubMed  Google Scholar 

  12. Adams MJM, SJ NRJ, Iglesias I, et al. Monitoring brain oxygen saturation during coronary bypass surgery: a randomized, prospective study. Anesth Analg. 2007;104:51-58.

    Article  PubMed  Google Scholar 

  13. http://www.somanetics.com/invos_principles.htm

  14. Heringlake M, Garbers C, Kabler JH, Anderson I, Heinze H, Schon J, Berger KU, Dibbelt L, Sievers HH, Hanke T.Perioperative cerebral oxygen saturation and clinical outcomes in cardiac surgery. Anesthesiology (in press) 2011

    Google Scholar 

  15. http://www.casmed.com/foresight.html

  16. Yoshitani K, Kawaguchi M, Miura N, et al. Effects of hemoglobin concentration, skull thickness, and the area of the cerebrospinal fluid layer on near-infrared spectroscopy measurements. Anesthesiology. 2007;106:458-462.

    Article  PubMed  Google Scholar 

  17. Ito H, Kanno I, Fukuda H. Human cerebral circulation: positron emission tomography studies. Ann Nucl Med. 2005 Apr;19(2):65-74.

    Article  PubMed  Google Scholar 

  18. Gagnon RE, Macnab AJ, Gagnon FA, Blackstock D, LeBlanc JG. Comparison of two spatially resolved NIRS oxygenation indices. J Clin Monit Comput. 2002;17:385-391.

    Article  PubMed  Google Scholar 

  19. Nagdyman N, Ewert P, Peters B, Miera O, Fleck T, Berger F. Comparison of different near-infrared spectroscopic cerebral oxygenation indices with central venous and jugular venous oxygenation saturation in children. Paediatr Anaesth. 2008;18:460-466.

    Google Scholar 

  20. Pringle J, Roberts C, Kohl M, Lekeux P. Near infrared spectroscopy in large animals: optical pathlength and influence of hair covering and epidermal pigmentation. Vet J. 1999;158(1):48-52.

    Article  CAS  PubMed  Google Scholar 

  21. Madsen PL, Skak C, Rasmussen A, Secher NH. Interference of cerebral near-infrared oximetry in patients with icterus. Anesth Analg. 2000 Feb;90(2):489-493.

    Article  CAS  PubMed  Google Scholar 

  22. Dunham C, Sosnowski C, Porter J. Correlation of noninvasive cerebral oximetry with cerebral perfusion in the severe head injured patients: a pilot study. J Trauma. 2002;52:40-46.

    Article  PubMed  Google Scholar 

  23. Schwartz G, Litscher G, Kleinert R. Cerebral oximetry in dead subjects. J Neurosurg Anesthesiol. 1996;8:189-193.

    Article  Google Scholar 

  24. Maeda H, Fukita K, Oritani S. Evaluation of post-mortem oximetry with references to the causes of death. Forensic Sci Int. 1997;87:201-210.

    Article  CAS  PubMed  Google Scholar 

  25. Newman MF, Lowry E, Croughwell ND, et al. Near infrared spectroscopy (INVOS 3100A) and cognitive outcome after cardiac surgery. Anesth Analg. 1997;84:S111.

    Article  Google Scholar 

  26. Murkin JM. Neurologic monitoring during cardiac surgery. Sem Cardiothorac Vasc Anesth. 2002;6:35-38.

    Article  Google Scholar 

  27. Novistky D, Boswell BB. Total myocardial revascularization without cardiopulmonary bypass utilizing computer-processed monitoring to assess cerebral perfusion. Heart Surg Forum. 2000;3:198-202.

    Google Scholar 

  28. Edmonds HL Jr. Multi-modality neurophysiologic monitoring for cardiac surgery. Heart Surg Forum. 2002;5:225-228.

    PubMed  Google Scholar 

  29. Edmonds HL, Ganzel BL, Austin EH. Cerebral oximetry for cardiac and vascular surgery. Sem Cardiothorac Vasc Anesth. 2004;8:147-166.

    Google Scholar 

  30. Diephuis JC, Moons KG, Nierich AN, Bruens M, van Dijk D, Kalkman CJ. Jugular bulb desaturation during coronary artery surgery: a comparison of off-pump and on-pump procedures. Br J Anaesth. 2005;94:715-720.

    Article  CAS  PubMed  Google Scholar 

  31. Alexander HC, Kronenefeld MA, Dance GR. Reduced postoperative length of stay may result from using cerebral oximetry monitoring to guide treatment. Ann Thorac Surg. 2002;73:373–C (abstract).

    Google Scholar 

  32. Yao FF, Tseng CA, Ho CA, Levin SK, Illner P. Cerebral oxygen desaturations is associated with early postoperative neuropsychological dysfunction in patients undergoing cardiac surgery. J Cardiothorac Vasc Anesth. 2004;18:552-558.

    Article  PubMed  Google Scholar 

  33. Yao FSF, Levin SK, Wu D, Illner P, Yu J, Huang SW, Tseng CC. Maintaining cerebral oxygen saturation during cardiac surgery shortened ICU and hospital stays. Anesth Analg. 2001;92:SCA 86.

    Google Scholar 

  34. Goldman S, Sutter F, Ferdinand F, Trace C. Optimizing intraoperative cerebral oxygen delivery using noninvasive cerebral oximetry decreases the incidence of stroke for cardiac surgical patients. Heart Surg Forum. 2004;7(5):E376-381.

    Article  PubMed  Google Scholar 

  35. Dunham CM, Ransom KJ, Flowers LL, Siegal JD, Kohli CM. Cerebral hypoxia in severely brain-injured patients is associated with admission Glasgow Coma Score, computed tomographic severity, cerebral perfusion pressure, and survival. J Trauma. 2004;56:482-491.

    Article  PubMed  Google Scholar 

  36. Papadimos TJ, Marco AP. Cerebral oximetry and an unanticipated circulatory arrest (letter). Anaesthesia. 2004;59:309-310.

    Article  CAS  PubMed  Google Scholar 

  37. Fukada J, Morishita K, Kawaharada N, et al. Isolated cerebral perfusion for interoperative cerebral malperfusion in type A aortic dissection. Ann Thor Surg. 2003;75:266-268.

    Article  Google Scholar 

  38. Janelle GM, Mnookin S, Gravenstein N, Martin TD, Urdaneta F. Unilateral cerebral oxygen desaturations during emergent repair of DeBakey type 1 aortic dissection: potential aversion of a major catastrophe. Anesthesiology. 2002;96:1263-1265.

    Article  PubMed  Google Scholar 

  39. Murkin JM, Bainbridge D, Novick R. In response. Do the data really support the conclusion? (letter). Anesth Analg. 2007;105:536-538.

    Article  Google Scholar 

  40. Fischer GW, Reich D, Plestis KA, Griepp RB. Results using absolute cerebral oximetry monitoring suggest the need for tailored patient management during cardiac surgery. Heart Surg Forum. 2006 (abstract)

    Google Scholar 

  41. Cullen DJ, Kirby RR. Beachchair position may decrease cerebral perfusion. Catastrophic outcomes have occurred. APSF Newslett. 2007;22(2):25-26.

    Google Scholar 

  42. North American Symptomatic Carotid Endarterectomy Trial Collaborators. Beneficial effect of carotid endarterectomy in symptomatic patients with high-grade carotid stenosis. N Engl J Med. 1991;325:445-453.

    Article  Google Scholar 

  43. The European Carotid Surgery Trialists Collaborative Group. Risk of stroke in the distribution of an asymptomatic carotid artery. Lancet. 1995;345:209-212.

    Google Scholar 

  44. Barnett HJ, Taylor DW, Eliasziw M, et al. Benefit of carotid endarterectomy in patients with symptomatic moderate or severe stenosis. North American Symptomatic Carotid Endarterectomy Trial Collaborators. N Engl J Med. 1998;339:1415-1425.

    Article  CAS  PubMed  Google Scholar 

  45. Rothwell PM, Eliasziw M, Gutnikov SA, et al. Analysis of pooled data from the randomised controlled trials of endarterectomy for symptomatic carotid stenosis. Lancet. 2003;361:107-116.

    Article  CAS  PubMed  Google Scholar 

  46. Naylor AR, Bell PR, Ruckley CV. Monitoring and cerebral protection during carotid endarterectomy. Br J Surg. 1992;79:735-741.

    Article  CAS  PubMed  Google Scholar 

  47. Beese U, Langer H, Lang W, Dinkel M. Comparison of near-infrared spectroscopy and somatosensory evoked potentials for the detection of cerebral ischemia during carotid endarterectomy. Stroke. 1998;29:2032-2037.

    CAS  PubMed  Google Scholar 

  48. Cho H, Nemoto EM, Yonas H, Balzer J, Sclabassi RJ. Cerebral monitoring by means of oximetry and somatosensory evoked potentials during carotid endarterectomy. J Neurosurg. 1998;89:533-538.

    Article  CAS  PubMed  Google Scholar 

  49. de Letter JA, Sie HT, Thomas BM, et al. Near-infrared reflected spectroscopy and electroencephalography during carotid endarterectomy – in search of a new shunt criterion. Neurol Res. 1998;20(Suppl 1):S23-27.

    PubMed  Google Scholar 

  50. Williams IM, Picton A, Farrell A, Mead GE, Mortimer AJ, McCollum CN. Light-reflective cerebral oximetry and jugular bulb venous oxygen saturation during carotid endarterectomy. Br J Surg. 1994;81:1291-1295.

    Article  CAS  PubMed  Google Scholar 

  51. Howell SJ. Carotid endarterectomy. Br J Anaesth. 2007;99:119-131.

    Article  CAS  PubMed  Google Scholar 

  52. Moritz S, Kasprzak P, Arlt M, Taeger K, Metz C. Accuracy of cerebral monitoring in detecting cerebral ischemia during carotid endarterectomy: a comparison of transcranial Doppler sonography, near-infrared spectroscopy, stump pressure, and somatosensory evoked potentials. Anesthesiology. 2007;107:563-569.

    Article  PubMed  Google Scholar 

  53. Calderon-Arnulphi M, Alaraj A, Amin-Hanjani S, et al. Detection of cerebral ischemia in neurovascular surgery using quantitative frequency-domain near-infrared spectroscopy. J Neurosurg. 2007;106:283-290.

    Article  CAS  PubMed  Google Scholar 

  54. Carlin RE, McGraw DJ, Calimlim JR, Mascia MF. The use of near-infrared cerebral oximetry in awake carotid endarterectomy. J Clin Anesth. 1998;10:109-113.

    Article  CAS  PubMed  Google Scholar 

  55. Casati A, Spreafico E, Putzu M, Fanelli G. New technology for noninvasive brain monitoring: continuous cerebral oximetry. Minerva Anestesiol. 2006;72:605-625.

    CAS  PubMed  Google Scholar 

  56. Hirofumi O, Otone E, Hiroshi I, et al. The effectiveness of regional cerebral oxygen saturation monitoring using near-infrared spectroscopy in carotid endarterectomy. J Clin Neurosci. 2003;10:79-83.

    Article  PubMed  Google Scholar 

  57. Vets P, ten Broecke P, Adriaensen H, Van Schil P, De Hert S. Cerebral oximetry in patients undergoing carotid endarterectomy: preliminary results. Acta Anaesthesiol Belg. 2004;55:215-220.

    PubMed  Google Scholar 

  58. Yamamoto K, Komiyama T, Miyata T, et al. Contralateral stenosis as a risk factor for carotid endarterectomy measured by near infrared spectroscopy. Int Angiol. 2004;23:388-393.

    CAS  PubMed  Google Scholar 

  59. Yamamoto K, Miyata T, Nagawa H. Good correlation between cerebral oxygenation measured using near infrared spectroscopy and stump pressure during carotid clamping. Int Angiol. 2007;26:262-265.

    CAS  PubMed  Google Scholar 

  60. Kirkpatrick PJ, Lam J, Al-Rawi P, Smielewski P, Czosnyka M. Defining thresholds for critical ischemia by using near-infrared spectroscopy in the adult brain. J Neurosurg. 1998;89:389-394.

    Article  CAS  PubMed  Google Scholar 

  61. Samra SK, Dy EA, Welch K, Dorje P, Zelenock GB, Stanley JC. Evaluation of a cerebral oximeter as a monitor of cerebral ischemia during carotid endarterectomy. Anesthesiology. 2000;93:964-970.

    Article  CAS  PubMed  Google Scholar 

  62. Mille T, Tachimiri ME, Klersy C, et al. Near infrared spectroscopy monitoring during carotid endarterectomy: which threshold value is critical? Eur J Vasc Endovasc Surg. 2004;27:646-650.

    Article  CAS  PubMed  Google Scholar 

  63. Rigamonti A, Scandroglio M, Minicucci F, Magrin S, Carozzo A, Casati A. A clinical evaluation of near-infrared cerebral oximetry in the awake patient to monitor cerebral perfusion during carotid endarterectomy. J Clin Anesth. 2005;17:426-430.

    Article  PubMed  Google Scholar 

  64. Ogasawara K, Sakai N, Kuroiwa T, et al. Intracranial hemorrhage associated with cerebral hyperperfusion syndrome following carotid endarterectomy and carotid artery stenting: retrospective review of 4494 patients. J Neurosurg. 2007;107:1130-1136.

    Article  PubMed  Google Scholar 

  65. Ogasawara K, Konno H, Yukawa H, Endo H, Inoue T, Ogawa A. Transcranial regional cerebral oxygen saturation monitoring during carotid endarterectomy as a predictor of postoperative hyperperfusion. Neurosurgery. 2003;53:309-14. discussion 314–315.

    Article  PubMed  Google Scholar 

  66. Kurth CD, Steven JM, Nicolson SC. Cerebral oxygenation during pediatric cardiac surgery using deep hypothermic circulatory arrest. Anesthesiology. 1995 Jan;82(1):74-82.

    Article  CAS  PubMed  Google Scholar 

  67. Kurth CD, Steven JM, Nicolson SC, Chance B, Delivoria-Papadopoulos M. Kinetics of cerebral deoxygenation during deep hypothermic circulatory arrest in neonates. Anesthesiology. 1992 Oct;77(4):656-661.

    Article  CAS  PubMed  Google Scholar 

  68. Leyvi G, Bello R, Wasnick JD, Plestis K. Assessment of cerebral oxygen balance during deep hypothermic circulatory arrest by continuous jugular bulb venous saturation and near-infrared spectroscopy. J Cardiothorac Vasc Anesth. 2006 Dec;20(6):826-833.

    Article  PubMed  Google Scholar 

  69. Ogino H, Ueda Y, Sugita T, et al. Monitoring of regional cerebral oxygenation by near-infrared spectroscopy during continuous retrograde cerebral perfusion for aortic arch surgery. Eur J Cardiothorac Surg. 1998 Oct;14(4):415-418.

    Article  CAS  PubMed  Google Scholar 

  70. Orihashi K, Sueda T, Okada K, Imai K. Near-infrared spectroscopy for monitoring cerebral ischemia during selective cerebral perfusion. Eur J Cardiothorac Surg. 2004 Nov;26(5):907-911.

    Article  PubMed  Google Scholar 

  71. Ogino H, Ueda Y, Sugita T, Morioka K, Sakakibara Y, Matsubayashi K. Nomoto T Monitoring of regional cerebral oxygenation by near-infrared spectroscopy during continuous retrograde cerebral perfusion for aortic arch surgery. Eur J Cardiothorac Surg. 1998 Oct;14(4):415-418.

    Article  CAS  PubMed  Google Scholar 

  72. Hofer A, Haizinger B, Geiselseder G, Mair R, Rehak P, Gombotz H. Monitoring of selective antegrade cerebral perfusion using near infrared spectroscopy in neonatal aortic arch surgery. Eur J Anaesthesiol. 2005 Apr;22(4):293-298.

    Article  CAS  PubMed  Google Scholar 

  73. Higami T, Kozawa S, Asada T, et al. A comparison of changes of cerebrovascular oxygen saturation in retrograde and selective cerebral perfusion during aortic arch surgery. Nippon Kyobu Geka Gakkai Zasshi. 1995 Dec;43(12):1919-1923.

    CAS  PubMed  Google Scholar 

  74. Matalanis G, Hata M, Buxton BF. A retrospective comparative study of deep hypothermic circulatory arrest, retrograde, and antegrade cerebral perfusion in aortic arch surgery. Ann Thorac Cardiovasc Surg. 2003 June;9(3):174-179.

    PubMed  Google Scholar 

  75. Higami T, Kozawa S, Asada T, et al. Retrograde cerebral perfusion versus selective cerebral perfusion as evaluated by cerebral oxygen saturation during aortic arch reconstruction. Ann Thorac Surg. 1999 Apr;67(4):1091-1096.

    Article  CAS  PubMed  Google Scholar 

  76. Okita Y, Minatoya K, Tagusari O, Ando M, Nagatsuka K, Kitamura S. Prospective comparative study of brain protection in total aortic arch replacement: deep hypothermic circulatory arrest with retrograde cerebral perfusion or selective antegrade cerebral perfusion. Ann Thorac Surg. 2001 July;72(1):72-79.

    Article  CAS  PubMed  Google Scholar 

  77. Olsson C, Thelin S. Regional cerebral saturation monitoring with near-infrared spectroscopy during selective antegrade cerebral perfusion: diagnostic performance and relationship to postoperative stroke. J Thorac Cardiovasc Surg. 2006 Feb;131(2):371-379.

    Article  PubMed  Google Scholar 

  78. Sakaguchi G, Komiya T, Tamura N, et al. Cerebral malperfusion in acute type A dissection: direct innominate artery cannulation. J Thorac Cardiovasc Surg. 2005;129:1190-1191.

    Article  PubMed  Google Scholar 

  79. Schneider F, Falk V, Walther T, Mohr FW. Control of endoaortic clamp position during port-access mitral valve operations using transcranial Doppler echography. Ann Thorac Surg. 1998;65:1481.

    Article  CAS  PubMed  Google Scholar 

  80. Hoksbergen AW, Legemate DA, Csiba L, et al. Absent collateral function of the circle of Willis as risk factor for ischemic stroke. Cerebrovasc Dis. 2003;16:191-198.

    Article  CAS  PubMed  Google Scholar 

  81. Merkkola P, Tulla H, Ronkainen A, et al. Incomplete circle of Willis and right axillary artery perfusion. Ann Thorac Surg. 2006;82:74-79.

    Article  PubMed  Google Scholar 

  82. Santo KC, Bonser RS, et al. Near-infrared spectroscopy. An important monitroing tool druing hybrid aortic arch replacement. Anesth Analg. 2008;107(3):793-796.

    Article  PubMed  Google Scholar 

  83. Denault A, Deschamps A, Murkin JM. A proposed algorithm for the intraoperative use of cerebral near-infrared spectroscopy. Semin Cardiothorac Vasc Anesth. 2007;11:274-281.

    PubMed  Google Scholar 

  84. Madsen PL, Nielsen HB, Christiansen P. Well-being and cerebral oxygen saturation during acute heart failure in humans. Clin Physiol. 2000;20:158-164.

    Article  CAS  PubMed  Google Scholar 

  85. Koike A, Itoh H, Oohara R, et al. Cerebral oxygenation during exercise in cardiac patients. Chest. 2004;125:182-190.

    Article  PubMed  Google Scholar 

  86. Paquet C, Deschamps A, Denault AY, et al. Baseline regional cerebral oxygen saturation correlates with left ventricular systolic and diastolic function. J Cardiothorac Vasc Anesth. 2008;22(4):840-846. Ref Type: In Press.

    Article  PubMed  Google Scholar 

  87. Gottlieb EA, Fraser CD Jr, Andropoulos DB, Diaz LK. Bilateral monitoring of cerebral oxygen saturation results in recognition of aortic cannula malposition during pediatric congenital heart surgery. Paediatr Anaesth. 2006;16:787-789.

    Article  PubMed  Google Scholar 

  88. Rossi M, Tirotta CF, Lagueruela RG, Madril D. Diminished Blalock-Taussig shunt flow detected by cerebral oximetry. Paediatr Anaesth. 2007;17:72-74.

    Article  PubMed  Google Scholar 

  89. Paton B, Pearcy WC, Swan H. The importance of the electroencephalogram during open cardiac surgery with particular reference to superior vena caval obstruction. Surg Gynecol Obstet. 1960;111:197-202.

    CAS  PubMed  Google Scholar 

  90. Avraamides EJ, Murkin JM. The effect of surgical dislocation of the heart on cerebral blood flow in the presence of a single, two-stage venous cannula during cardiopulmonary bypass. Can J Anaesth. 1996;43:A36.

    Google Scholar 

  91. Caruso LJ, Gravenstein N, Janelle GM, Gabrielli A. Detection of oxygen delivery failure during cardiopulmonary bypass: an even earlier warning technique. J Cardiothorac Vasc Anesth. 2002;16:789.

    PubMed  Google Scholar 

  92. Longhi L, Valeriani V, Rossi S, et al. Effects of hyperoxia on brain tissue oxygen tension in cerebral focal lesions. Acta Neurochir Suppl. 2002;81:315-317.

    CAS  PubMed  Google Scholar 

  93. Singhal AB, Dijkhuizen RM, Rosen BR, Lo EH. Normobaric hyperoxia reduces MRI diffusion abnormalities and infarct size in experimental stroke. Neurology. 2002;58:945-952.

    PubMed  Google Scholar 

  94. Agardh CD, Zhang H, Smith ML, Siesjo BK. Free radical production and ischemic brain damage: influence of postischemic oxygen tension. Int J Dev Neurosci. 1991;9:127-138.

    Article  CAS  PubMed  Google Scholar 

  95. Yao FSF, Tseng CC, Yu JHN. Relationship between ETCO2 and cerebral oxygen tension. Anesthesiology. 2000;A-320.

    Google Scholar 

  96. Kolb JC, Ainslie PN, Ide K, Poulin MJ. Protocol to measure acute cerebrovascular and ventilatory responses to isocapnic hypoxia in humans. Respir Physiol Neurobiol. 2004;141:191-199.

    Article  PubMed  Google Scholar 

  97. Torella F, McCollum CN. Regional haemoglobin oxygen saturation during surgical haemorrhage. Minerva Med. 2004;95:461-467.

    CAS  PubMed  Google Scholar 

  98. Shann KG, Likosky DS, Murkin JM, et al. An evidence-based review of the practice of cardiopulmonary bypass in adults: a focus on neurologic injury, glycemic control, hemodilution, and the inflammatory response. J Thorac Cardiovasc Surg. 2006;132:283-290.

    Article  PubMed  Google Scholar 

  99. Gaynor JW, Nicolson SC, Jarvik GP, et al. Increasing duration of deep hypothermic circulatory arrest is associated with an increased incidence of postoperative electroencephalographic seizures. J Thorac Cardiovasc Surg. 2005 Nov;130(5):1278-1286.

    Article  PubMed  Google Scholar 

  100. Dernevik L, Arvidsson S, William-Olsson G. Cerebral perfusion in dogs during pulsatile and non pulsatile extracorporeal circulation. J Cardiovasc Surg (Torino). 1985;26:32-5.

    CAS  Google Scholar 

  101. Murkin JM, Farrar K. The influence of pulsatile vs nonpulsatile cardiopulmonary bypass on cerebral blood flow and cerebral metabolism. Anesthesiology. 1989;71:A41.

    Article  Google Scholar 

  102. Harel F, Denault A, Ngo Q, et al. Near-infrared spectroscopy to monitor peripheral blood flow perfusion. J Clin Monit Comput. 2008;22(1):37-43.

    Article  PubMed  Google Scholar 

  103. Fearn SJ, Hutchinson S, Riding G, et al. Carotid endarterectomy improves cognitive function in patients with exhausted cerebrovascular reserve. Eur J Vasc Endovasc Surg. 2003;26:529-536.

    Article  CAS  PubMed  Google Scholar 

  104. de Waal EE, de Vries JW, Kruitwagen CL, Kalkman CJ. The effects of low-pressure carbon dioxide pneumoperitoneum on cerebral oxygenation and cerebral blood volume in children. Anesth Analg. 2002;94:500-505.

    Article  PubMed  Google Scholar 

  105. Plachky J, Hofer S, Volkmann M, et al. Regional cerebral oxygen saturation is a sensitive marker of cerebral hypoperfusion during orthotopic liver transplantation. Anesth Analg. 2004;99:344-349. table.

    Article  CAS  PubMed  Google Scholar 

  106. Bundgaard-Nielsen M, Ruhnau B, Secher NH, Kehlet H. Flow-related techniques for preoperative goal-directed fluid optimization. Br J Anaesth. 2007;98:38-44.

    Article  CAS  PubMed  Google Scholar 

  107. Taylor JH, Mulier KE, Myers DE, Beilman GJ. Use of near-infrared spectroscopy in early determination of irreversible hemorrhagic shock. J Trauma. 2005;58:1119-1125.

    Article  PubMed  Google Scholar 

  108. Skarda DE, Mulier KE, Myers DE, et al. Dynamic near-infrared spectroscopy measurements in patients with severe sepsis. Shock. 2007;27:348-353.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John M. Murkin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer London

About this chapter

Cite this chapter

Murkin, J.M., Arango, M.F., Deschamps, A., Denault, A.Y. (2011). Near-Infrared Spectroscopy Monitoring in Cardiac Surgery: Theory, Practice, and Utility. In: Bonser, R., Pagano, D., Haverich, A. (eds) Brain Protection in Cardiac Surgery. Springer, London. https://doi.org/10.1007/978-1-84996-293-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-293-3_11

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-292-6

  • Online ISBN: 978-1-84996-293-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics