Skip to main content

Intraoperative Brain Monitoring in Cardiac Surgery

  • Chapter
  • First Online:
Brain Protection in Cardiac Surgery

Abstract

In most centers, continuous monitoring of clinical variables (Table 10.1) during cardiac surgical procedures is considered sufficient to ensure the well-being of the central nervous system and, by logical extension, minimize the risk of perioperative neurological complications. An overwhelming body of evidence, however, indicates that neurological injury may occur following technically successful and seemingly uneventful surgery.1–3

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Roach GW, Kanchuger M, Mangano CM, et al. Adverse cerebral outcomes after coronary bypass surgery Multicenter Study of Perioperative Ischemia Research Group and the Ischemia Research and Education Foundation Investigators. N Engl J Med. 1996;335(25):1857-1863.

    CAS  PubMed  Google Scholar 

  2. Arrowsmith J, Grocott H, Reves J, Newman M. Central nervous system complications of cardiac surgery. Br J Anaesth. 2000;84(3):378-393.

    CAS  PubMed  Google Scholar 

  3. Newman M, Mathew J, Grocott H, et al. Central nervous system injury associated with cardiac surgery. Lancet. 2006; 368(9536):694-703.

    PubMed  Google Scholar 

  4. Hoffman GM. Neurologic monitoring on cardiopulmonary bypass: what are we obligated to do? Ann Thorac Surg. 2006;81(6):S2373-S2380.

    PubMed  Google Scholar 

  5. Murkin JM, Newman SP, Stump DA, Blumenthal JA. Statement of consensus on assessment of neurobehavioral outcomes after cardiac surgery. Ann Thorac Surg. 1995; 59(5):1289-1295.

    CAS  PubMed  Google Scholar 

  6. Keats AS, Slogoff S. Perfusion pressure and coronary bypass. J Thorac Cardiovasc Surg. 1996;112(1):204-206.

    CAS  PubMed  Google Scholar 

  7. Gold JP, Charlson ME, Williams-Russo P, et al. Improvement of outcomes after coronary artery bypass A randomized trial comparing intraoperative high versus low mean arterial pressure. J Thorac Cardiovasc Surg. 1995;110(5):1302-1311.

    CAS  PubMed  Google Scholar 

  8. Hill SE, van Wermeskerken GK, Lardenoye JW, et al. Intra­operative physiologic variables and outcome in cardiac surgery: Part I In-hospital mortality. Ann Thorac Surg. 2000; 69(4):1070-1075.

    CAS  PubMed  Google Scholar 

  9. van Wermeskerken GK, Lardenoye JW, Hill SE, et al. Intraoperative physiologic variables and outcome in cardiac surgery: Part II Neurologic outcome. Ann Thorac Surg. 2000;69(4):1077­1083.

    PubMed  Google Scholar 

  10. Hogue CW Jr, Palin CA, Arrowsmith JE. Cardiopulmonary bypass management and neurologic outcomes: an evidence-based appraisal of current practices. Anesth Analg. 2006; 103(1):21-37.

    PubMed  Google Scholar 

  11. Taylor RH, Burrows FA, Bissonnette B. Cerebral pressure-flow velocity relationship during hypothermic cardiopulmonary bypass in neonates and infants. Anesth Analg. 1992; 74(5):636-642.

    CAS  PubMed  Google Scholar 

  12. Kern FH, Ungerleider RM, Quill TJ, et al. Cerebral blood flow response to changes in arterial carbon dioxide tension during hypothermic cardiopulmonary bypass in children. J Thorac Cardiovasc Surg. 1991;101(4):618-622.

    CAS  PubMed  Google Scholar 

  13. Stone JG, Young WL, Smith CR, et al. Do standard monitoring sites reflect true brain temperature when profound hypothermia is rapidly induced and reversed? Anesthesiology. 1995;82(2):344-351.

    CAS  PubMed  Google Scholar 

  14. Grocott HP, Newman MF. Temperature measurement during cardiac surgery. Can J Anaesth. 1998;45(11):1133-1134.

    CAS  PubMed  Google Scholar 

  15. Grocott HP, Newman MF, Croughwell ND, White WD, Lowry E, Reves JG. Continuous jugular venous versus nasopharyngeal temperature monitoring during hypothermic cardiopulmonary bypass for cardiac surgery. J Clin Anesth. 1997;9(4):312-316.

    CAS  PubMed  Google Scholar 

  16. Matta B. Advances in monitoring cerebral oxygenation. Curr Opin Anaesthesiol. 1996;9:365-370.

    Google Scholar 

  17. Gejrot T, Lauren T. Retrograde Venography of the Internal Jugular Veins and Transverse Sinuses; Technique and Roentgen Anatomy. Acta Otolaryngol. 1964;57:556-570.

    CAS  PubMed  Google Scholar 

  18. Hayman LA, Fahr LM, Taber KH, Hughes CL, Ritter AM, Robertson C. Radiographic assessment of jugular bulb catheters. Emerg Radiol. 1995;2(6):331-338.

    Google Scholar 

  19. Bankier AA, Fleischmann D, Windisch A, et al. Position of jugular oxygen saturation catheter in patients with head trauma: assessment by use of plain films. Am J Roentgenol. 1995;164(2):437-441.

    CAS  Google Scholar 

  20. Coplin WM, O’Keefe GE, Grady MS, et al. Thrombotic, infectious, and procedural complications of the jugular bulb catheter in the intensive care unit. Neurosurgery. 1997;41(1):101-107.

    CAS  PubMed  Google Scholar 

  21. Matta BF, Lam AM. The rate of blood withdrawal affects the accuracy of jugular venous bulb Oxygen saturation measurements. Anesthesiology. 1997;86(4):806-808.

    CAS  PubMed  Google Scholar 

  22. Millar SA, Alston RP, Souter MJ, Andrews PJ. Continuous monitoring of jugular bulb oxyhaemoglobin saturation using the Edslab dual lumen oximetry catheter during and after cardiac surgery. Br J Anaesth. 1999;82(4):521-524.

    CAS  PubMed  Google Scholar 

  23. Souter MJ, Andrews PJ. Validation of the Edslab dual lumen oximetry catheter for continuous monitoring of jugular bulb oxygen saturation after severe head injury. Br J Anaesth. 1996;76(5):744-746.

    CAS  PubMed  Google Scholar 

  24. Stocchetti N, Paparella A, Bridelli F, Bacchi M, Piazza P, Zuccoli P. Cerebral venous oxygen saturation studied with bilateral samples in the internal jugular veins. Neurosurgery. 1994;34(1):38-43.

    CAS  PubMed  Google Scholar 

  25. Cook DJ, Oliver WC Jr, Orszulak TA, Daly RC, Bryce RD. Cardiopulmonary bypass temperature, hematocrit, and cerebral oxygen delivery in humans. Ann Thorac Surg. 1995; 60(6):1671-1677.

    CAS  PubMed  Google Scholar 

  26. Greeley WJ, Kern FH, Ungerleider RM, et al. The effect of hypothermic cardiopulmonary bypass and total circulatory arrest on cerebral metabolism in neonates, infants, and children. J Thorac Cardiovasc Surg. 1991;101(5):783-794.

    CAS  PubMed  Google Scholar 

  27. Goto T, Yoshitake A, Baba T, Shibata Y, Sakata R, Uozumi H. Cerebral ischemic disorders and cerebral oxygen balance during cardiopulmonary bypass surgery: preoperative evaluation using magnetic resonance imaging and angiography. Anesth Analg. 1997;84(1):5-11.

    CAS  PubMed  Google Scholar 

  28. Kern FH, Ungerleider RM, Schulman SR, et al. Comparing two strategies of cardiopulmonary bypass cooling on jugular venous oxygen saturation in neonates and infants. Ann Thorac Surg. 1995;60(5):1198-1202.

    CAS  PubMed  Google Scholar 

  29. Sapire KJ, Gopinath SP, Farhat G, et al. Cerebral oxygenation during warming after cardiopulmonary bypass. Crit Care Med. 1997;25(10):1655-1662.

    CAS  PubMed  Google Scholar 

  30. Andropoulos DB, Stayer SA, McKenzie ED, Fraser CD Jr. Novel cerebral physiologic monitoring to guide low-flow cerebral perfusion during neonatal aortic arch reconstruction. J Thorac Cardiovasc Surg. 2003;125(3):491-499.

    PubMed  Google Scholar 

  31. von Knobelsdorff G, Tonner PH, Hanel F, Bischoff P, Scholz J, Schulte am Esch J. Prolonged rewarming after hypothermic cardiopulmonary bypass does not attenuate reduction of jugular bulb oxygen saturation. J Cardiothorac Vasc Anesth. 1997;11(6):689-693.

    Google Scholar 

  32. Hänel F, von Knobelsdorff G, Werner C, Schulte am Esch J. Hypercapnia prevents jugular bulb desaturation during rewarming from hypothermic cardiopulmonary bypass. Anesthesiology. 1998;89(1):19-23.

    PubMed  Google Scholar 

  33. Croughwell N, Lyth M, Quill TJ, et al. Diabetic patients have abnormal cerebral autoregulation during cardiopulmonary bypass. Circulation. 1990;82(5):IV407-IV412.

    CAS  PubMed  Google Scholar 

  34. Schwartz LB, Bridgman AH, Kieffer RW, et al. Asymptomatic carotid artery stenosis and stroke in patients undergoing cardiopulmonary bypass. J Vasc Surg. 1995;21(1):146-153.

    CAS  PubMed  Google Scholar 

  35. Goto T, Baba T, Yoshitake A, Shibata Y, Ura M, Sakata R. Craniocervical and aortic atherosclerosis as neurologic risk factors in coronary surgery. Ann Thorac Surg. 2000;69(3):834-40.

    CAS  PubMed  Google Scholar 

  36. Kadoi Y, Saito S, Kawahara F, Goto F, Owada R, Fujita N. Jugular venous bulb oxygen saturation in patients with preexisting diabetes mellitus or stroke during normothermic cardiopulmonary bypass. Anesthesiology. 2000;92(5): 1324-1329.

    CAS  PubMed  Google Scholar 

  37. Kadoi Y, Saito S, Goto F, Someya T, Kamiyashiki S, Fujita N. Time course of changes in jugular venous oxygen saturation during hypothermic or normothermic cardiopulmonary bypass in patients with diabetes mellitus. Acta Anaesthesiol Scand. 2001;45(7):858-862.

    CAS  PubMed  Google Scholar 

  38. Kadoi Y, Saito S, Yoshikawa D, Goto F, Fujita N, Kunimoto F. Increasing mean arterial blood pressure has no effect on jugular venous oxygen saturation in insulin-dependent patients during tepid cardiopulmonary bypass. Anesth Analg. 2002;95(2):266-272. table of contents.

    PubMed  Google Scholar 

  39. Kuwabara M, Nakajima N, Yamamoto F, et al. Continuous monitoring of blood oxygen saturation of internal jugular vein as a useful indicator for selective cerebral perfusion during aortic arch replacement. J Thorac Cardiovasc Surg. 1992;103(2):355-362.

    CAS  PubMed  Google Scholar 

  40. Matsuwaka R, Sakakibara T, Mitsuno M, et al. Improved management of selective cerebral perfusion in aortic arch surgery. ASAIO J. 1996;42(5):M794-M796.

    CAS  PubMed  Google Scholar 

  41. Gopinath SP, Robertson CS, Contant CF, et al. Jugular venous desaturation and outcome after head injury. J Neurol Neurosurg Psychiatr. 1994;57(6):717-723.

    CAS  PubMed  Google Scholar 

  42. Croughwell ND, Newman MF, Blumenthal JA, et al. Jugular bulb saturation and cognitive dysfunction after cardiopulmonary bypass. Ann Thorac Surg. 1994;58(6):1702-1728.

    CAS  PubMed  Google Scholar 

  43. Newman MF, Kramer D, Croughwell ND, et al. Differential age effects of mean arterial pressure and rewarming on cognitive dysfunction after cardiac surgery. Anesth Analg. 1995;81(2):236-242.

    CAS  PubMed  Google Scholar 

  44. Grigore AM, Grocott HP, Mathew JP, et al. The rewarming rate and increased peak temperature alter neurocognitive outcome after cardiac surgery. Anesth Analg. 2002;94(1):4-10. table of contents.

    PubMed  Google Scholar 

  45. Kurth CD, Steven JM, Swedlow D. New frontiers in oximetry. Am J Anesthesiol. 1996;23:169-175.

    Google Scholar 

  46. Jöbsis FF. Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science. 1977;198(4323):1264-1267.

    PubMed  Google Scholar 

  47. Ferrari M, Wilson DA, Hanley DF, Hartmann JF, Rogers MC, Traystman RJ. Noninvasive determination of hemoglobin saturation in dogs by derivative near-infrared spectroscopy. Am J Physiol. 1989;256(5 Pt 2):H1493-H1499.

    CAS  PubMed  Google Scholar 

  48. Kurth CD, Steven JM, Benaron D, Chance B. Near-infrared monitoring of the cerebral circulation. J Clin Monit. 1993; 9(3):163-170.

    CAS  PubMed  Google Scholar 

  49. Delpy DT, Cope M, van der Zee P, Arridge S, Wray S, Wyatt J. Estimation of optical pathlength through tissue from direct time of flight measurement. Phys Med Biol. 1988;33(12):1433-1442.

    CAS  PubMed  Google Scholar 

  50. Duncan A, Meek JH, Clemence M, et al. Optical pathlength measurements on adult head, calf and forearm and the head of the newborn infant using phase resolved optical spectroscopy. Phys Med Biol. 1995;40(2):295-304.

    CAS  PubMed  Google Scholar 

  51. Elwell CE, Cope M, Edwards AD, Wyatt JS, Delpy DT, Reynolds EO. Quantification of adult cerebral hemodynamics by near-infrared spectroscopy. J Appl Physiol. 1994; 77(6):2753-2760.

    CAS  PubMed  Google Scholar 

  52. Elwell CE. A Practical Users Guide to Near Infrared Spectroscopy. London: Hamamatsu Ohotonics KK/UCL Reprographics; 1995.

    Google Scholar 

  53. Watzman HM, Kurth CD, Montenegro LM, Rome J, Steven JM, Nicolson SC. Arterial and venous contributions to near-infrared cerebral oximetry. Anesthesiology. 2000;93(4):947-953.

    CAS  PubMed  Google Scholar 

  54. Germon TJ, Kane NM, Manara AR, Nelson RJ. Near-infrared spectroscopy in adults: effects of extracranial ischemia and intracranial hypoxia on estimation of cerebral oxygenation. Br J Anaesth. 1994;73(4):503-506.

    CAS  PubMed  Google Scholar 

  55. Grubhofer G, Lassnigg A, Manlik F, Marx E, Trubel W, Hiesmayr M. The contribution of extracranial blood oxygenation on near-infrared spectroscopy during carotid thrombendarterectomy. Anesthesia. 1997;52(2):116-120.

    CAS  Google Scholar 

  56. Hongo K, Kobayashi S, Okudera H, Hokama M, Nakagawa F. Noninvasive cerebral optical spectroscopy: depth-resolved measurements of cerebral haemodynamics using indocyanine green. Neurol Res. 1995;17(2):89-93.

    CAS  PubMed  Google Scholar 

  57. Kaminogo M, Ochi M, Onizuka M, Takahata H, Shibata S. An additional monitoring of regional cerebral oxygen saturation to HMPAO SPECT study during balloon test occlusion. Stroke. 1999;30(2):407-413.

    CAS  PubMed  Google Scholar 

  58. Holzschuh M, Woertgen C, Metz C, Brawanski A. Dynamic changes of cerebral oxygenation measured by brain tissue oxygen pressure and near infrared spectroscopy. Neurol Res. 1997;19(3):246-248.

    CAS  PubMed  Google Scholar 

  59. Misra M, Stark J, Dujovny M, Widman R, Ausman JI. Transcranial cerebral oximetry in random normal subjects. Neurol Res. 1998;20(2):137-141.

    CAS  PubMed  Google Scholar 

  60. Kim MB, Ward DS, Cartwright CR, Kolano J, Chlebowski S, Henson LC. Estimation of jugular venous O2 saturation from cerebral oximetry or arterial O2 saturation during isocapnic hypoxia. J Clin Monit Comput. 2000;16(3):191-199.

    CAS  PubMed  Google Scholar 

  61. Kishi K, Kawaguchi M, Yoshitani K, Nagahata T, Furuya H. Influence of patient variables and sensor location on regional cerebral oxygen saturation measured by INVOS 4100 near-infrared spectrophotometers. J Neurosurg Anesthesiol. 2003; 15(4):302-306.

    PubMed  Google Scholar 

  62. Edmonds HL Jr, Ganzel BL, Austin EH 3rd. Cerebral oximetry for cardiac and vascular surgery. Semin Cardiothorac Vasc Anesth. 2004;8(2):147-166.

    PubMed  Google Scholar 

  63. Pollard V, Prough DS, DeMelo AE, Deyo DJ, Uchida T, Stoddart HF. Validation in volunteers of a near-infrared spectroscope for monitoring brain oxygenation in vivo. Anesth Analg. 1996;82(2):269-277.

    CAS  PubMed  Google Scholar 

  64. Doblar DD. Intraoperative transcranial ultrasonic monitoring for cardiac and vascular surgery. Semin Cardiothorac Vasc Anesth. 2004;8(2):127-145.

    PubMed  Google Scholar 

  65. Arrowsmith JE. Neurological monitoring. In: Mackay JM, Arrowsmith JE, eds. Core Topics in Cardiac Anesthesia. Cambridge: Cambridge University Press; 2004:141-146.

    Google Scholar 

  66. Aaslid R, Markwalder TM, Nornes H. Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries. J Neurosurg. 1982;57(6):769-774.

    CAS  PubMed  Google Scholar 

  67. Chung EM. Transcranial Doppler embolus dtection: a primer. Ultrasound. 2006;14(4):202-210.

    Google Scholar 

  68. Bishop CC, Powell S, Rutt D, Browse NL. Transcranial Doppler measurement of middle cerebral artery blood flow velocity: a validation study. Stroke. 1986;17(5):913-915.

    CAS  PubMed  Google Scholar 

  69. Grocott HP, Amory DW, Lowry E, Croughwell ND, Newman MF. Transcranial Doppler blood flow velocity versus 133Xe clearance cerebral blood flow during mild hypothermic cardiopulmonary bypass. J Clin Monit Comput. 1998;14(1):35-39.

    CAS  PubMed  Google Scholar 

  70. Trivedi UH, Patel RL, Turtle MR, Venn GE, Chambers DJ. Relative changes in cerebral blood flow during cardiac operations using xenon-133 clearance versus transcranial Doppler sonography. Ann Thorac Surg. 1997;63(1):167-174.

    CAS  PubMed  Google Scholar 

  71. Groom RC, Quinn RD, Lennon P, et al. Detection and elimination of microemboli related to cardiopulmonary bypass. Circ Cardiovasc Qual Outcomes. 2009;2(3):191-198.

    Google Scholar 

  72. Rodriguez RA, Cornel G, Semelhago L, Splinter WM, Weerasena NA. Cerebral effects in superior vena caval cannula obstruction: the role of brain monitoring. Ann Thorac Surg. 1997;64(6):1820-1822.

    CAS  PubMed  Google Scholar 

  73. Siegel LC, St Goar FG, Stevens JH. Monitoring considerations for port-access cardiac surgery. Circulation. 1997; 96(2):562-568.

    CAS  PubMed  Google Scholar 

  74. Grocott HP, Smith MS, Glower DD, Clements FM. Endovascular aortic balloon clamp malposition during minimally invasive cardiac surgery: detection by transcranial Doppler monitoring. Anesthesiology. 1998;88(5):1396-1399.

    CAS  PubMed  Google Scholar 

  75. O’Hare B, Bissonnette B, Bohn D, Cox P, Williams W. Persistent low cerebral blood flow velocity following profound hypothermic circulatory arrest in infants. Can J Anaesth. 1995;42(11):964-971.

    PubMed  Google Scholar 

  76. Astudillo R, van der Linden J, Ekroth R, et al. Absent diastolic cerebral blood flow velocity after circulatory arrest but not after low flow in infants. Ann Thorac Surg. 1993;56(3):515-519.

    CAS  PubMed  Google Scholar 

  77. Zimmerman AA, Burrows FA, Jonas RA, Hickey PR. The limits of detectable cerebral perfusion by transcranial Doppler sonography in neonates undergoing deep hypothermic low-flow cardiopulmonary bypass. J Thorac Cardiovasc Surg. 1997;114(4):594-600.

    CAS  PubMed  Google Scholar 

  78. Neri E, Sassi C, Barabesi L, et al. Cerebral autoregulation after hypothermic circulatory arrest in operations on the aortic arch. Ann Thorac Surg. 2004;77(1):72-79.

    PubMed  Google Scholar 

  79. Tanoue Y, Tominaga R, Ochiai Y, et al. Comparative study of retrograde and selective cerebral perfusion with transcranial Doppler. Ann Thorac Surg. 1999;67(3):672-675.

    CAS  PubMed  Google Scholar 

  80. Ganzel BL, Edmonds HL Jr, Pank JR, Goldsmith LJ. Neurophysiologic monitoring to assure delivery of retrograde cerebral perfusion. J Thorac Cardiovasc Surg. 1997; 113(4):748-755.

    CAS  PubMed  Google Scholar 

  81. Saver JL, Feldman E. Basic transcranial Doppler examination: technique and anatomy. In: Babakian VL, Wechsler LR, eds. Transcranial Doppler Ultrasonography. St Louis: Mosby; 1993.

    Google Scholar 

  82. Doblar DD, Plyushcheva NV, Jordan W, McDowell H. Predicting the effect of carotid artery occlusion during carotid endarterectomy: comparing transcranial doppler measurements and cerebral angiography. Stroke. 1998; 29(10):2038-2042.

    CAS  PubMed  Google Scholar 

  83. Adams R, McKie V, Nichols F, et al. The use of transcranial ultrasonography to predict stroke in sickle cell disease. N Engl J Med. 1992;326(9):605-610.

    CAS  PubMed  Google Scholar 

  84. Grosset DG, Georgiadis D, Kelman AW, Lees KR. Quantification of ultrasound emboli signals in patients with cardiac and carotid disease. Stroke. 1993;24(12):1922-1924.

    CAS  PubMed  Google Scholar 

  85. Georgiadis D, Mallinson A, Grosset DG, Lees KR. Coagulation activity and emboli counts in patients with prosthetic cardiac valves. Stroke. 1994;25(6):1211-1214.

    CAS  PubMed  Google Scholar 

  86. Georgiadis D, Grosset DG, Quin RO, Nichol JA, Bone I, Lees KR. Detection of intracranial emboli in patients with carotid disease. Eur J Vasc Surg. 1994;8(3):309-314.

    CAS  PubMed  Google Scholar 

  87. Grosset DG, Cowburn P, Georgiadis D, Dargie HJ, Faichney A, Lee KR. Ultrasound detection of cerebral emboli in patients with prosthetic heart valves. J Heart Valve Dis. 1994;3(2):128-132.

    CAS  PubMed  Google Scholar 

  88. Grosset DG, Georgiadis D, Abdullah I, Bone I, Lees KR. Doppler emboli signals vary according to stroke subtype. Stroke. 1994;25(2):382-384.

    CAS  PubMed  Google Scholar 

  89. Tong DC, Bolger A, Albers GW. Incidence of transcranial Doppler-detected cerebral microemboli in patients referred for echocardiography. Stroke. 1994;25(11):2138-2141.

    CAS  PubMed  Google Scholar 

  90. Streifler JY, Katz M. Cardiogenic cerebral emboli: diagnosis and treatment. Curr Opin Neurol. 1995;8(1):45-54.

    CAS  PubMed  Google Scholar 

  91. Muller HR, Lyrer P, Boccalini P. Doppler monitoring of middle cerebral artery emboli from carotid stenoses. J Neuroimaging. 1995;5(2):71-7 5.

    CAS  PubMed  Google Scholar 

  92. Aasen J, Kerty E, Russell D, Bakke SJ, Nyberg-Hansen R. Amaurosis fugax: clinical, Doppler and angiographic findings. Acta Neurol Scand. 1988;77(6):450-455.

    CAS  PubMed  Google Scholar 

  93. Dittrich R, Ritter MA, Kaps M, et al. The use of embolic signal detection in multicenter trials to evaluate antiplatelet efficacy: signal analysis and quality control mechanisms in the CARESS (Clopidogrel and Aspirin for Reduction of Emboli in Symptomatic carotid Stenosis) trial. Stroke. 2006;37(4):1065-1069.

    PubMed  Google Scholar 

  94. Spencer MP, Thomas GI, Nicholls SC, Sauvage LR. Detection of middle cerebral artery emboli during carotid endarterectomy using transcranial Doppler ultrasonography. Stroke. 1990;21(3):415-423.

    CAS  PubMed  Google Scholar 

  95. Arrowsmith JE, Stygall J, Timberlake N, et al. The intra-aortic balloon pump is a source of cerebral microemboli. Perfusion. 1997;12(1):33.

    Google Scholar 

  96. von Knobelsdorff G, Brauer P, Tonner PH, et al. Trans­myocardial laser revascularization induces cerebral microembolization. Anesthesiology. 1997;87(1):58-62.

    Google Scholar 

  97. Dagirmanjian A, Davis DA, Rothfus WE, Goldberg AL, Deeb ZL. Detection of clinically silent intracranial emboli ipsilateral to internal carotid occlusions during cerebral angiography. Am J Roentgenol. 2000;174(2):367-369.

    CAS  Google Scholar 

  98. Edmonds CR, Barbut D, Hager D, Sharrock NE. Intraoperative cerebral arterial embolization during total hip arthroplasty. Anesthesiology. 2000;93(2):315-318.

    CAS  PubMed  Google Scholar 

  99. Rodriguez RA, Sinclair B, Weatherdon D, Letts M. Patent foramen ovale and brain microembolization during scoliosis surgery in adolescents. Spine. 2001;26(15):1719-1721.

    CAS  PubMed  Google Scholar 

  100. Nabavi DG, Stockmann J, Schmid C, et al. Doppler microembolic load predicts risk of thromboembolic complications in Novacor patients. J Thorac Cardiovasc Surg. 2003; 126(1):160-167.

    PubMed  Google Scholar 

  101. Ferrari J, Baumgartner H, Tentschert S, et al. Cerebral microembolism during transcatheter closure of patent foramen ovale. J Neurol. 2004;251(7):825-829.

    CAS  PubMed  Google Scholar 

  102. Ehrlich R, Mutzmacher L, Averbuch L, Dotan G, Hirsh R. Do complaints of amaurosis fugax and blurred vision after transcatheter device closure of atrial septal defect indicate microemboli to retinal vessels? J Interv Cardiol. 2005; 18(1):21-25.

    PubMed  Google Scholar 

  103. van der Linden J, Casimir-Ahn H. When do cerebral emboli appear during open heart operations? A transcranial Doppler study. Ann Thorac Surg. 1991;51(2):237-241.

    PubMed  Google Scholar 

  104. Barbut D, Hinton RB, Szatrowski TP, et al. Cerebral emboli detected during bypass surgery are associated with clamp removal. Stroke. 1994;25(12):2398-2402.

    CAS  PubMed  Google Scholar 

  105. Hartman GS, Yao FS, Bruefach M 3rd, et al. Severity of aortic atheromatous disease diagnosed by transesophageal echocardiography predicts stroke and other outcomes associated with coronary artery surgery: a prospective study. Anesth Analg. 1996;83(4):701-708.

    CAS  PubMed  Google Scholar 

  106. O’Brien JJ, Butterworth J, Hammon JW, Morris KJ, Phipps JM, Stump DA. Cerebral emboli during cardiac surgery in children. Anesthesiology. 1997;87(5):1063-1069.

    PubMed  Google Scholar 

  107. Taylor RL, Borger MA, Weisel RD, Fedorko L, Feindel CM. Cerebral microemboli during cardiopulmonary bypass: increased emboli during perfusionist interventions. Ann Thorac Surg. 1999;68(1):89-93.

    CAS  PubMed  Google Scholar 

  108. Borger MA, Feindel CM. Cerebral emboli during cardiopulmonary bypass: effect of perfusionist interventions and aortic cannulas. J Extra Corpor Technol. 2002;34(1):29-33.

    PubMed  Google Scholar 

  109. Cassie AB, Riddell AG, Yates PO. Hazard of antifoam emboli from a bubble oxygenator. Thorax. 1960;15:22-29.

    CAS  PubMed  Google Scholar 

  110. Helmsworth JA, Gall EA, Perrin EV, et al. Occurrence of emboli during perfusion with an oxygenator pump. Surgery. 1963;53:177-185.

    CAS  PubMed  Google Scholar 

  111. Deverall PB, Padayachee TS, Parsons S, Theobold R, Battistessa SA. Ultrasound detection of micro-emboli in the middle cerebral artery during cardiopulmonary bypass surgery. Eur J Cardiothorac Surg. 1988;2(4):256-260.

    CAS  PubMed  Google Scholar 

  112. Padayachee TS, Parsons S, Theobold R, Linley J, Gosling RG, Deverall PB. The detection of microemboli in the middle cerebral artery during cardiopulmonary bypass: a transcranial Doppler ultrasound investigation using membrane and bubble oxygenators. Ann Thorac Surg. 1987;44(3):298-302.

    CAS  PubMed  Google Scholar 

  113. Novitzky D, Boswell BB. Total myocardial revascularization without cardiopulmonary bypass utilizing computer-processed monitoring to assess cerebral perfusion. Heart Surg Forum. 2000;3(3):198-202.

    CAS  PubMed  Google Scholar 

  114. Watters MP, Cohen AM, Monk CR, Angelini GD, Ryder IG. Reduced cerebral embolic signals in beating heart coronary surgery detected by transcranial Doppler ultrasound. Br J Anaesth. 2000;84(5):629-631.

    CAS  PubMed  Google Scholar 

  115. Skjelland M, Bergsland J, Lundblad R, et al. Cerebral microembolization during off-pump coronary artery bypass surgery with the Symmetry aortic connector device. J Thorac Cardiovasc Surg. 2005;130(6):1581-1585.

    PubMed  Google Scholar 

  116. Murkin JM. Con: Blood gases should not be corrected for temperature during hypothermic cardiopulmonary bypass: alpha-stat mode. J Cardiothorac Anesth. 1988;2(5):705-707.

    CAS  PubMed  Google Scholar 

  117. Murkin JM. Alpha-stat acid-base regulation during cardiopulmonary bypass. J Thorac Cardiovasc Surg. 1997;113(3):619-620.

    CAS  PubMed  Google Scholar 

  118. Pugsley W, Klinger L, Paschalis C, Treasure T, Harrison M, Newman S. The impact of microemboli during cardiopulmonary bypass on neuropsychological functioning. Stroke. 1994;25(7):1393-1399.

    CAS  PubMed  Google Scholar 

  119. BhaskerRao B, VanHimbergen D, Edmonds HL Jr, et al. Evidence for improved cerebral function after minimally invasive bypass surgery. J Card Surg. 1998;13(1):27-31.

    CAS  PubMed  Google Scholar 

  120. Braekken SK, Reinvang I, Russell D, Brucher R, Svennevig JL. Association between intraoperative cerebral microembolic signals and postoperative neuropsychological deficit: comparison between patients with cardiac valve replacement and patients with coronary artery bypass grafting. J Neurol Neurosurg Psychiatry. 1998;65(4):573-576.

    CAS  PubMed  Google Scholar 

  121. Malheiros SM, Brucki SM, Gabbai AA, et al. Neurological outcome in coronary artery surgery with and without cardiopulmonary bypass. Acta Neurol Scand. 1995;92(3):256-260.

    CAS  PubMed  Google Scholar 

  122. Jacobs A, Neveling M, Horst M, et al. Alterations of neuropsychological function and cerebral glucose metabolism after cardiac surgery are not related only to intraoperative microembolic events. Stroke. 1998;29(3):660-667.

    CAS  PubMed  Google Scholar 

  123. Katz ES, Tunick PA, Rusinek H, Ribakove G, Spencer FC, Kronzon I. Protruding aortic atheromas predict stroke in elderly patients undergoing cardiopulmonary bypass: experience with intraoperative transesophageal echocardiography. J Am Coll Cardiol. 1992;20(1):70-77.

    CAS  PubMed  Google Scholar 

  124. Mackensen GB, Ti LK, Phillips-Bute BG, Mathew JP, Newman MF, Grocott HP. Cerebral embolization during cardiac surgery: impact of aortic atheroma burden. Br J Anaesth. 2003;91(5):656-661.

    CAS  PubMed  Google Scholar 

  125. Pugsley WB, Klinger L, Paschalis C, Newman SN, Harrison M, Treasure T. Does arterial line filtration affect the bypass related cerebral impairment observed in patients undergoing coronary artery surgery? Clin Sci. 1988;75(Suppl 19):30-31.

    Google Scholar 

  126. Calafiore AM, Bar-El Y, Vitolla G, et al. Early clinical experience with a new sutureless anastomotic device for proximal anastomosis of the saphenous vein to the aorta. J Thorac Cardiovasc Surg. 2001;121(5):854-858.

    CAS  PubMed  Google Scholar 

  127. Mullges W, Franke D, Reents W, Babin-Ebell J. Brain microembolic counts during extracorporeal circulation depend on aortic cannula position. Ultrasound Med Biol. 2001;27(7):933-936.

    CAS  PubMed  Google Scholar 

  128. Borger MA, Taylor RL, Weisel RD, et al. Decreased cerebral emboli during distal aortic arch cannulation: a randomized clinical trial. J Thorac Cardiovasc Surg. 1999;118(4):740-745.

    CAS  PubMed  Google Scholar 

  129. Caton R. The electric currents of the brain. BMJ. 1875; 2:278.

    Google Scholar 

  130. Swartz BE, Goldensohn ES. Timeline of the history of EEG and associated fields. Electroencephalogr Clin Neurophysiol. 1998;106(2):173-176.

    CAS  PubMed  Google Scholar 

  131. Berger H. Uber das Elektroenkelogram des Menchen. Arch f Psychiat. 1929;87:527-570.

    Google Scholar 

  132. Jenkinson JL. The monitoring of central nervous system funciton in anesthesia and intensive care. Curr Anaesth Crit Care. 1990;1(2):115-121.

    Google Scholar 

  133. Rampil IJ. A primer for EEG signal processing in anesthesia. Anesthesiology. 1998;89(4):980-1002.

    CAS  PubMed  Google Scholar 

  134. McCormick DA. Neurotransmitter actions in the thalamus and cerebral cortex and their role in neuromodulation of thalamocortical activity. Prog Neurobiol. 1992;39(4):337-388.

    CAS  PubMed  Google Scholar 

  135. American Electroencephalographic Society guidelines for standard electrode position nomenclature. J Clin Neuro­physiol. 1991;8(2):200-202.

    Google Scholar 

  136. Klem GH, Luders HO, Jasper HH, Elger C. The ten-twenty electrode system of the International Federation. The International Federation of Clinical Neurophysiology. Electroencephalogr Clin Neurophysiol Suppl. 1999;52:3-6.

    CAS  PubMed  Google Scholar 

  137. Cooley JW, Tukey JW. An algorithm for the machine calculation of complex Fourier series. Math Comput. 1965; 19:297-301.

    Google Scholar 

  138. Maynard DE, Jenkinson JL. The cerebral function analysing monitor. Initial clinical experience, application and further development. Anesthesia. 1984;39(7):678-690.

    CAS  Google Scholar 

  139. Prichep LS, Gugino LD, John ER, et al. The Patient State Index as an indicator of the level of hypnosis under general anesthesia. Br J Anaesth. 2004;92(3):393-399.

    CAS  PubMed  Google Scholar 

  140. Sachdev NS, Carter CC, Swank RL, Blachly PH. Relationship between post-cardiotomy delirium, clinical neurological changes, and EEG abnormalities. J Thorac Cardiovasc Surg. 1967;54(4):557-563.

    CAS  PubMed  Google Scholar 

  141. Sotaniemi KA. Clinical and prognostic correlates of EEG in open-heart surgery patients. J Neurol Neurosurg Psychiatr. 1980;43(10):941-947.

    CAS  PubMed  Google Scholar 

  142. Sotaniemi KA, Sulg IA, Hokkanen TE. Quantitative EEG as a measure of cerebral dysfunction before and after open-heart surgery. Electroencephalogr Clin Neurophysiol. 1980;50(1-2):81-95.

    CAS  PubMed  Google Scholar 

  143. Sotaniemi K. Five-year neurological and EEG outcome after open-heart surgery. J Neurol Neurosurg Psychiatr. 1985;48(6):569-575.

    CAS  PubMed  Google Scholar 

  144. Levy WJ. Quantitative analysis of EEG changes during hypothermia. Anesthesiology. 1984;60(4):291-297.

    CAS  PubMed  Google Scholar 

  145. Frank M, Maynard DE, Tsanaclis LM, Major E, Coutinho PE. Changes in cerebral electrical activity measured by the Cerebral Function Analysing Monitor following bolus injections of thiopentone. Br J Anaesth. 1984;56(10):1075-81.

    CAS  PubMed  Google Scholar 

  146. Sebel PS, Bovill JG, Wauquier A, Rog P. Effects of high-dose fentanyl anesthesia on the electroencephalogram. Anesthesiology. 1981;55(3):203-211.

    CAS  PubMed  Google Scholar 

  147. John ER, Prichep LS, Kox W, et al. Invariant reversible QEEG effects of anesthetics. Conscious Cogn. 2001;10(2):165-183.

    CAS  PubMed  Google Scholar 

  148. Gugino LD, Chabot RJ, Prichep LS, John ER, Formanek V, Aglio LS. Quantitative EEG changes associated with loss and return of consciousness in healthy adult volunteers anaesthetized with propofol or sevoflurane. Br J Anaesth. 2001;87(3):421-428.

    CAS  PubMed  Google Scholar 

  149. Woodcock TE, Murkin JM, Farrar JK, Tweed WA, Guiraudon GM, McKenzie FN. Pharmacologic EEG suppression during cardiopulmonary bypass: cerebral hemodynamic and metabolic effects of thiopental or isoflurane during hypothermia and normothermia. Anesthesiology. 1987;67(2):218-224.

    CAS  PubMed  Google Scholar 

  150. Bonhomme V, Plourde G, Meuret P, Fiset P, Backman SB. Auditory steady-state response and bispectral index for assessing level of consciousness during propofol sedation and hypnosis. Anesth Analg. 2000;91(6):1398-1403.

    CAS  PubMed  Google Scholar 

  151. Drover DR, Lemmens HJ, Pierce ET, et al. Patient State Index: titration of delivery and recovery from propofol, alfentanil, and nitrous oxide anesthesia. Anesthesiology. 2002;97(1):82-89.

    PubMed  Google Scholar 

  152. Adam N, Sebel PS. BIS monitoring: awareness and catastrophic events. Semin Cardiothorac Vasc Anesth. 2004;8(1):9-12.

    PubMed  Google Scholar 

  153. Ekman A, Lindholm ML, Lennmarken C, Sandin R. Reduction in the incidence of awareness using BIS monitoring. Acta Anaesthesiol Scand. 2004;48(1):20-26.

    CAS  PubMed  Google Scholar 

  154. Vakkuri A, Yli-Hankala A, Talja P, et al. Time-frequency balanced spectral entropy as a measure of anesthetic drug effect in central nervous system during sevoflurane, propofol, and thiopental anesthesia. Acta Anaesthesiol Scand. 2004;48(2):145-153.

    CAS  PubMed  Google Scholar 

  155. Guaracino F. Cerebral monitoring during cardiovascular surgery. Curr Opin Anesthesiol. 2008;21:50-54.

    Google Scholar 

  156. Edmonds HL Jr. Multi-modality neurophysiologic monitoring for cardiac surgery. Heart Surg Forum. 2002;5(3):225-228.

    PubMed  Google Scholar 

  157. Schwartz RB, Jones KM, LeClercq GT, et al. The value of cerebral angiography in predicting cerebral ischemia during carotid endarterectomy. Am J Roentgenol. 1992;159(5):1057-1061.

    CAS  Google Scholar 

  158. Hanowell LH, Soriano S, Bennett HL. EEG power changes are more sensitive than spectral edge frequency variation for detection of cerebral ischemia during carotid artery surgery: a prospective assessment of processed EEG monitoring. J Cardiothorac Vasc Anesth. 1992;6(3):292-294.

    CAS  PubMed  Google Scholar 

  159. Hans SS, Jareunpoon O. Prospective evaluation of elec­troencephalography, carotid artery stump pressure, and ­neurologic changes during 314 consecutive carotid endarterectomies performed in awake patients. J Vasc Surg. 2007; 45(3):511-515.

    PubMed  Google Scholar 

  160. Theye RA, Patrick RT, Kirklin JW. The electro-encephalogram in patients undergoing open intracardiac operations with the aid of extracorporeal circulation. J Thorac Surg. 1957;34(6):709-717.

    CAS  PubMed  Google Scholar 

  161. Branthwaite MA. Factors affecting cerebral activity during open-heart surgery. Anesthesia. 1973;28(6):619-625.

    CAS  Google Scholar 

  162. Branthwaite MA. Detection of neurological damage during open-heart surgery. Thorax. 1973;28(4):464-472.

    CAS  PubMed  Google Scholar 

  163. Branthwaite MA. Prevention of neurological damage during open-heart surgery. Thorax. 1975;30(3):258-261.

    CAS  PubMed  Google Scholar 

  164. Kritikou PE, Branthwaite MA. Significance of changes in cerebral electrical activity at onset of cardiopulmonary bypass. Thorax. 1977;32(5):534-538.

    CAS  PubMed  Google Scholar 

  165. Arom KV, Cohen DE, Strobl FT. Effect of intraoperative intervention on neurological outcome based on electroencephalographic monitoring during cardiopulmonary bypass. Ann Thorac Surg. 1989;48(4):476-483.

    CAS  PubMed  Google Scholar 

  166. Bashein G, Nessly ML, Bledsoe SW, et al. Elec­tro­encephalography during surgery with cardiopulmonary bypass and hypothermia. Anesthesiology. 1992;76(6):878-891.

    CAS  PubMed  Google Scholar 

  167. Edmonds HL Jr, Griffiths LK, van der Laken J, Slater AD, Shields CB. Quantitative electroencephalographic monitoring during myocardial revascularization predicts postoperative disorientation and improves outcome. J Thorac Car­­­-diovasc Surg. 1992;103(3):555-563.

    PubMed  Google Scholar 

  168. Hauser E, Seidl R, Rohrbach D, Hartl I, Marx M, Wimmer M. Quantitative EEG before and after open heart surgery in children. A significant decrease in the beta and alpha 2 bands postoperatively. Electroencephalogr Clin Neu­ro­physiol. 1993;87(5):284-290.

    CAS  PubMed  Google Scholar 

  169. Chabot RJ, Gugino LD, Aglio LS, Maddi R, Cote W. QEEG and neuropsychological profiles of patients after undergoing cardiopulmonary bypass surgical procedures. Clin Electroencephalogr. 1997;28(2):98-105.

    CAS  PubMed  Google Scholar 

  170. Gugino LD, Chabot RJ, Aglio LS, Maddi R, Gosnell J, Aranki S. QEEG and neuropsychological profiles of patients prior to undergoing cardiopulmonary bypass surgical procedures. Clin Electroencephalogr. 1997;28(2):87-97.

    CAS  PubMed  Google Scholar 

  171. Banoub M, Tetzlaff JE, Schubert A. Pharmacologic and physiologic influences affecting sensory evoked potentials: implications for perioperative monitoring. Anesthesiology. 2003;99(3):716-737.

    PubMed  Google Scholar 

  172. Gugino LD, Chabot RJ, Aglio LS, Aranki S, Dekkers R, Maddi R. QEEG changes during cardiopulmonary bypass: relationship to postoperative neuropsychological function. Clin Electroencephalogr. 1999;30(2):53-63.

    CAS  PubMed  Google Scholar 

  173. Arroyo S, Lesser RP, Gillinov AM, et al. EEG and prognosis of neurologic recovery of dogs under profound hypothermic circulatory arrest. Electroencephalogr Clin Neurophysiol. 1993;87(4):242-249.

    CAS  PubMed  Google Scholar 

  174. Edmonds HL Jr, Rodriguez RA, Audenaert SM, Austin EH 3rd, Pollock SB Jr, Ganzel BL. The role of neuromonitoring in cardiovascular surgery. J Cardiothorac Vasc Anesth. 1996;10(1):15-23.

    PubMed  Google Scholar 

  175. Stecker MM, Cheung AT, Pochettino A, et al. Deep hypothermic circulatory arrest: II Changes in electroencephalogram and evoked potentials during rewarming. Ann Thorac Surg. 2001;71(1):22-28.

    CAS  PubMed  Google Scholar 

  176. Newberg LA, Michenfelder JD. Cerebral protection by isoflurane during hypoxemia or ischemia. Anesthesiology. 1983;59(1):29-35.

    CAS  PubMed  Google Scholar 

  177. Newberg LA, Milde JH, Michenfelder JD. The cerebral metabolic effects of isoflurane at and above concentrations that suppress cortical electrical activity. Anesthesiology. 1983;59(1):23-28.

    CAS  PubMed  Google Scholar 

  178. Michenfelder JD. A valid demonstration of barbiturate-induced brain protection in man-at last. Anesthesiology. 1986;64(2):140-142.

    CAS  PubMed  Google Scholar 

  179. Nussmeier NA, Arlund C, Slogoff S. Neuropsychiatric complications after cardiopulmonary bypass: cerebral protection by a barbiturate. Anesthesiology. 1986;64(2):165-170.

    CAS  PubMed  Google Scholar 

  180. Pascoe EA, Hudson RJ, Anderson BA, et al. High-dose thiopentone for open-chamber cardiac surgery: a retrospective review. Can J Anaesth. 1996;43(6):575-579.

    CAS  PubMed  Google Scholar 

  181. Newman MF, Murkin JM, Roach G, et al. Cerebral physiologic effects of burst suppression doses of propofol during nonpulsatile cardiopulmonary bypass CNS Subgroup of McSPI. Anesth Analg. 1995;81(3):452-457.

    CAS  PubMed  Google Scholar 

  182. Newman MF, Croughwell ND, White WD, Sanderson I, Spillane W, Reves JG. Pharmacologic electroencephalographic suppression during cardiopulmonary bypass: a comparison of thiopental and isoflurane. Anesth Analg. 1998;86(2):246-251.

    CAS  PubMed  Google Scholar 

  183. Roach GW, Newman MF, Murkin JM, et al. Ineffectiveness of burst suppression therapy in mitigating perioperative cerebrovascular dysfunction. Multicenter Study of Perio­perative Ischemia (McSPI) Research Group. Anes­thesiology. 1999;90(5):1255-1264.

    CAS  PubMed  Google Scholar 

  184. Mourisse J, Booij L. Bispectral index detects period of cerebral hypoperfusion during cardiopulmonary bypass. J Cardiothorac Vasc Anesth. 2003;17(1):76-78.

    PubMed  Google Scholar 

  185. Villacorta J, Kerbaul F, Collart F, et al. Perioperative cerebral ischemia in cardiac surgery and BIS. Anaesth Intensive Care. 2005;33(4):514-517.

    CAS  PubMed  Google Scholar 

  186. Puri GD, Murthy SS. Bispectral index monitoring in patients undergoing cardiac surgery under cardiopulmonary bypass. Eur J Anaesthesiol. 2003;20(6):451-456.

    CAS  PubMed  Google Scholar 

  187. Kumar A, Bhattacharya A, Makhija N. Evoked potential monitoring in anesthesia and analgesia. Anesthesia. 2000; 55(3):225-241.

    CAS  Google Scholar 

  188. American Electroencephalographic Society. Guideline eleven: guidelines for intraoperative monitoring of sensory evoked potentials. J Clin Neurophysiol. 1994;11(1):77-87.

    Google Scholar 

  189. American Electroencephalographic Society. Guideline nine: guidelines on evoked potentials. J Clin Neurophysiol. 1994;11(1):40-73.

    Google Scholar 

  190. American Electroencephalographic Society. Guideline one: minimum technical requirements for performing clinical electroencephalography. J Clin Neurophysiol. 1994;11(1):2-5.

    Google Scholar 

  191. Denys EH. AAEM minimonograph #14: The influence of temperature in clinical neurophysiology. Muscle Nerve. 1991;14(9):795-811.

    CAS  PubMed  Google Scholar 

  192. Markand ON, Warren C, Mallik GS, King RD, Brown JW, Mahomed Y. Effects of hypothermia on short latency somatosensory evoked potentials in humans. Electroencephalogr Clin Neurophysiol. 1990;77(6):416-424.

    CAS  PubMed  Google Scholar 

  193. Markand ON, Warren C, Mallik GS, Williams CJ. Temperature-dependent hysteresis in somatosensory and auditory evoked potentials. Electroencephalogr Clin Neurophysiol. 1990;77(6):425-435.

    CAS  PubMed  Google Scholar 

  194. Stecker MM, Cheung AT, Pochettino A, et al. Deep hypothermic circulatory arrest: I Effects of cooling on electroencephalogram and evoked potentials. Ann Thorac Surg. 2001;71(1):14-21.

    CAS  PubMed  Google Scholar 

  195. Cantor RS. The lateral pressure profile in membranes: a physical mechanism of general anesthesia. Biochemistry. 1997;36(9):2339-2344.

    CAS  PubMed  Google Scholar 

  196. Rosenberg PH, Heavner JE. Temperature-dependent nerve-blocking action of lidocaine and halothane. Acta Anaesthesiol Scand. 1980;24(4):314-320.

    CAS  PubMed  Google Scholar 

  197. Zhou JX, Liu J. The effect of temperature on solubility of volatile anesthetics in human tissues. Anesth Analg. 2001;93(1):234-238.

    CAS  PubMed  Google Scholar 

  198. Stecker MM, Kent G, Escherich A, Patterson T, Cheung AT. Anesthesia and temperature effects on somatosensory evoked potentials produced by train stimuli. Int J Neurosci. 2002;112(3):349-369.

    PubMed  Google Scholar 

  199. Stecker MM, Cheung AT, Patterson T, et al. Detection of stroke during cardiac operations with somatosensory evoked responses. J Thorac Cardiovasc Surg. 1996;112(4):962-972.

    CAS  PubMed  Google Scholar 

  200. Cheung AT, Savino JS, Weiss SJ, et al. Detection of acute embolic stroke during mitral valve replacement using somatosensory evoked potential monitoring. Anesthesiology. 1995;83(1):208-210.

    CAS  PubMed  Google Scholar 

  201. Guerit JM, Verhelst R, Rubay J, et al. The use of somatosensory evoked potentials to determine the optimal degree of hypothermia during circulatory arrest. J Card Surg. 1994;9(5):596-603.

    CAS  PubMed  Google Scholar 

  202. Cheung AT, Bavaria JE, Pochettino A, Weiss SJ, Barclay DK, Stecker MM. Oxygen delivery during retrograde cerebral perfusion in humans. Anesth Analg. 1999;88(1):8-15.

    CAS  PubMed  Google Scholar 

  203. Hickey C, Gugino LD, Aglio LS, Mark JB, Son SL, Maddi R. Intraoperative somatosensory evoked potential monitoring predicts peripheral nerve injury during cardiac surgery. Anesthesiology. 1993;78(1):29-35.

    CAS  PubMed  Google Scholar 

  204. Jellish WS, Martucci J, Blakeman B, Hudson E. Somatosensory evoked potential monitoring of the brachial plexus to predict nerve injury during internal mammary artery harvest: intraoperative comparisons of the Rultract and Pittman sternal retractors. J Cardiothorac Vasc Anesth. 1994;8(4):398-403.

    CAS  PubMed  Google Scholar 

  205. Jellish WS, Blakeman B, Warf P, Slogoff S. Somatosensory evoked potential monitoring used to compare the effect of three asymmetric sternal retractors on brachial plexus function. Anesth Analg. 1999;88(2):292-297.

    CAS  PubMed  Google Scholar 

  206. Seal D, Balaton J, Coupland SG, et al. Somatosensory evoked potential monitoring during cardiac surgery: an examination of brachial plexus dysfunction. J Cardiothorac Vasc Anesth. 1997;11(2):187-191.

    CAS  PubMed  Google Scholar 

  207. Porkkala T, Kaukinen S, Hakkinen V, Jantti V. Effects of hypothermia and sternal retractors on median nerve somatosensory evoked potentials. Acta Anaesthesiol Scand. 1997;41(7):843-848.

    CAS  PubMed  Google Scholar 

  208. Rodriguez RA. Human auditory evoked potentials in the assessment of brain function during major cardiovascular surgery. Semin Cardiothorac Vasc Anesth. 2004;8(2):85-99.

    PubMed  Google Scholar 

  209. Thornton C. Evoked potentials in anesthesia. Eur J Anaesthesiol. 1991;8(2):89-107.

    CAS  PubMed  Google Scholar 

  210. Thornton C, Jones JG. Evaluating depth of anesthesia: review of methods. Int Anesthesiol Clin. 1993;31(4):67-88.

    CAS  PubMed  Google Scholar 

  211. Rodriguez RA, Audenaert SM, Austin EH 3rd, Edmonds HL Jr. Auditory evoked responses in children during hypothermic cardiopulmonary bypass: report of cases. J Clin Neurophysiol. 1995;12(2):168-176.

    CAS  PubMed  Google Scholar 

  212. Soltani M, Knight RT. Neural origins of the P300. Crit Rev Neurobiol. 2000;14(3–4):199-224.

    CAS  PubMed  Google Scholar 

  213. Baudena P, Halgren E, Heit G, Clarke JM. Intracerebral potentials to rare target and distractor auditory and visual stimuli. III. Frontal cortex. Electroencephalogr Clin Neurophysiol. 1995;94(4):251-264.

    CAS  PubMed  Google Scholar 

  214. Halgren E, Baudena P, Clarke JM, et al. Intracerebral potentials to rare target and distractor auditory and visual stimuli. I. Superior temporal plane and parietal lobe. Electroencephalogr Clin Neurophysiol. 1995;94(3):191-220.

    CAS  PubMed  Google Scholar 

  215. Halgren E, Baudena P, Clarke JM, et al. Intracerebral potentials to rare target and distractor auditory and visual stimuli. II. Medial, lateral and posterior temporal lobe. Electroencephalogr Clin Neurophysiol. 1995;94(4):229-250.

    CAS  PubMed  Google Scholar 

  216. Guerit JM, Verougstraete D, de Tourtchaninoff M, Debatisse D, Witdoeckt C. ERPs obtained with the auditory oddball paradigm in coma and altered states of consciousness: clinical relationships, prognostic value, and origin of components. Clin Neurophysiol. 1999;110(7):1260-1259.

    CAS  PubMed  Google Scholar 

  217. Mazzini L, Zaccala M, Gareri F, Giordano A, Angelino E. Long-latency auditory-evoked potentials in severe traumatic brain injury. Arch Phys Med Rehabil. 2001;82(1):57-65.

    CAS  PubMed  Google Scholar 

  218. Cheour M, Korpilahti P, Martynova O, Lang AH. Mismatch negativity and late discriminative negativity in investigating speech perception and learning in children and infants. Audiol Neurootol. 2001;6(1):2-11.

    CAS  PubMed  Google Scholar 

  219. Korpilahti P, Krause CM, Holopainen I, Lang AH. Early and late mismatch negativity elicited by words and speech-like stimuli in children. Brain Lang. 2001;76(3):332-339.

    CAS  PubMed  Google Scholar 

  220. Jemel B, Oades RD, Oknina L, Achenbach C, Ropcke B. Frontal and temporal lobe sources for a marker of controlled auditory attention: the negative difference (Nd) event-related potential. Brain Topogr. 2003;15(4):249-262.

    PubMed  Google Scholar 

  221. Alho K. Cerebral generators of mismatch negativity (MMN) and its magnetic counterpart (MMNm) elicited by sound changes. Ear Hear. 1995;16(1):38-51.

    CAS  PubMed  Google Scholar 

  222. Naatanen R, Alho K. Mismatch negativity–a unique measure of sensory processing in audition. Int J Neurosci. 1995; 80(1–4):317-337.

    CAS  PubMed  Google Scholar 

  223. Kraus N, McGee T. The middle latency response generating system. Electroencephalogr Clin Neurophysiol Suppl. 1995;44:93-101.

    CAS  PubMed  Google Scholar 

  224. Rodriguez RA, Cornel G, Austin EH 3rd, Auden SM, Weerasena NA. Brain function monitoring during bidirectional Glenn procedures. J Thorac Cardiovasc Surg. 2000; 119(3):617-619.

    CAS  PubMed  Google Scholar 

  225. Rodriguez RA, Edmonds HL Jr, Auden SM, Austin EH 3rd. Auditory brainstem evoked responses and temperature monitoring during pediatric cardiopulmonary bypass. Can J Anaesth. 1999;46(9):832-839.

    CAS  PubMed  Google Scholar 

  226. Kress JP, Pohlman AS, O’Connor MF, Hall JB. Daily interruption of sedative infusions in critically ill patients undergoing mechanical ventilation. N Engl J Med. 2000; 342(20):1471-1477.

    CAS  PubMed  Google Scholar 

  227. Yppärilä H, Karhu J, Westerén-Punnonen S, Musialowicz T, Partanen J. Evidence of auditory processing during postoperative propofol sedation. Clin Neurophysiol. 2002; 113(8):1357-1364.

    PubMed  Google Scholar 

  228. Schwender D, Kaiser A, Klasing S, Peter K, Poppel E. Midlatency auditory evoked potentials and explicit and implicit memory in patients undergoing cardiac surgery. Anesthesiology. 1994;80(3):493-501.

    CAS  PubMed  Google Scholar 

  229. Kilo J, Czerny M, Gorlitzer M, et al. Cardiopulmonary bypass affects cognitive brain function after coronary artery bypass grafting. Ann Thorac Surg. 2001;72(6):1926-1932.

    CAS  PubMed  Google Scholar 

  230. Grimm M, Zimpfer D, Czerny M, et al. Neurocognitive deficit following mitral valve surgery. Eur J Cardiothorac Surg. 2003;23(3):265-271.

    PubMed  Google Scholar 

  231. Zimpfer D, Kilo J, Czerny M, et al. Neurocognitive deficit following aortic valve replacement with biological/mechanical prosthesis. Eur J Cardiothorac Surg. 2003;23(4):544-551.

    PubMed  Google Scholar 

  232. Korpelainen JT, Kauhanen ML, Tolonen U, et al. Auditory P300 event related potential in minor ischemic stroke. Acta Neurol Scand. 2000;101(3):202-208.

    CAS  PubMed  Google Scholar 

  233. Austin EH 3rd, Edmonds HL Jr, Auden SM, et al. Benefit of neurophysiologic monitoring for pediatric cardiac surgery. J Thorac Cardiovasc Surg. 1997;114(5):707-715.

    PubMed  Google Scholar 

  234. Malmivuo J, Plonsey R. Bioelectromagnetism – Principles and Applications of Bioelectric and Biomagnetic Fields. New York: Oxford University Press; 1995.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph E. Arrowsmith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer London

About this chapter

Cite this chapter

Arrowsmith, J.E., Ganugapenta, M.S.S.R. (2011). Intraoperative Brain Monitoring in Cardiac Surgery. In: Bonser, R., Pagano, D., Haverich, A. (eds) Brain Protection in Cardiac Surgery. Springer, London. https://doi.org/10.1007/978-1-84996-293-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-293-3_10

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-292-6

  • Online ISBN: 978-1-84996-293-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics