Skip to main content

Experimental Characterization of Fiber-Reinforced Composite Materials

  • Chapter
  • First Online:
Fatigue of Fiber-reinforced Composites

Part of the book series: Engineering Materials and Processes ((EMP))

Abstract

The experimental results obtained from specimens cut at different on- and off-axis angles from a multidirectional laminate with the stacking sequence [0/(± 45)2/0]T are presented in this chapter. The aim is to describe the behavior of this material system (which is a common structural component for a number of engineering applications) under several loading patterns, and to describe the material database that will be used later on in this volume to demonstrate the application of the developed theories for the fatigue life prediction of the examined material.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K.L. Reifsneider, K.N. Lauraitis (eds.), Fatigue of filamentary composite materials, ASTM STP 636 (American Society for Testing and Materials, Philadelphia, 1977)

    Google Scholar 

  2. K.N. Lauraitis (ed.), Fatigue of Fibrous Composite Materials, ASTM STP 723 (American Society for Testing and Materials, 1981

    Google Scholar 

  3. R. Talreja, Fatigue of Composite Materials, Technomic, (1987)

    Google Scholar 

  4. P.A. Lagace (ed.), Composite Material: Fatigue and Fracture, ASTM STP 1012, vol. 2, (American Society for Testing and Materials, Philadelphia, 1989)

    Google Scholar 

  5. K.L. Reifsnider (ed.), Fatigue of Composite Materials, Composite Materials Series 4, (Elsevier, Amsterdam, 1991)

    Google Scholar 

  6. T.K. O’Brien, Towards a damage tolerance philosophy for composite materials and structures, in Composite Materials: Testing and Design ASTM STP 1059, vol. 9, ed. by S.P. Garbo (American Society for Testing and Materials, Philadelphia, 1990)

    Google Scholar 

  7. S.G. Pantelakis, T.P. Philippidis, T.B. Kermanidis, Damage accumulation in thermoplastic laminates subjected to reversed cyclic loading. in High Technology Composites in Modern Applications, ed. by S.A. Paipetis, A.G. Yioutsos. (University of Patras, Patras 1995) pp. 156–1641

    Google Scholar 

  8. C.W. Kensche (ed.), Fatigue of Materials and Components for Wind Turbine Rotor Blades, European Commission, Directorate-General XII, Science, Research and Development, EUR 16684, (1996)

    Google Scholar 

  9. R.M. Mayer, Design of Composite Structures Against Fatigue: Applications to Wind Turbine Blades, (Antony Rowe Ltd., Chippenham, Wiltshire, 1996)

    Google Scholar 

  10. B.J. de Smet, P.W. Bach, Database fact: fatigue of composites for wind turbines, ECN-C-94-045, (1994)

    Google Scholar 

  11. J.F. Mandell, D.D. Samborsky, DOE/MSU Composite Material Fatigue Database. Sandia National Laboratories, SAND97-3002, online via www.sandia.gov/wind, v. 18, 21st March Updated (2008)

  12. D.R.V. van Delft, H.D. Rink, P.A. Joosse, P.W. Bach, Fatigue behaviour of fibreglass wind turbine blade material at the very high cycle range. in European Wind Energy Conference Proceedings, vol. 1. (Thessaloniki, Greece, 1994) pp. 379–384

    Google Scholar 

  13. A.T. Echtermeyer, Fatigue of glass reinforced composites described by one standard fatigue lifetime curve. In European Wind Energy Conference Proceedings, vol. 1 (Thessaloniki, Greece, 1994) pp. 391–396

    Google Scholar 

  14. P.A. Joosse, D.R.V. van Delft, P.W. Bach, Fatigue design curves compared to test data of fibreglass blade material, in European Wind Energy Conference Proceedings, vol. 3, (Thessaloniki, Greece, 1994) pp. 720–726

    Google Scholar 

  15. C.W. Kensche, Lifetime of gl-ep rotor blade material under impact and moisture, 3rd Symposium on Wind Turbine Fatigue Proceedings, Petten, Holland: IEA, April 21–22, (1994) pp. 137–143

    Google Scholar 

  16. D.R.V. van Delft, G.D. de Winkel, P.A. Joosse, Fatigue behavior of fiberglas wind turbine blade material under variable loading, 4th Symposium on Wind Turbine Fatigue Proceedings, Stuttgart, Germany: IEA, Feb 1–2, (1996) pp. 75–80

    Google Scholar 

  17. C.W. Kensche. Which slope for GL-Ep fatigue curve? 4th Symposium on Wind Turbine Fatigue Proceedings, Stuttgart, Germany: IEA, Feb 1–2, (1996) pp. 81–85

    Google Scholar 

  18. M.J. Owen, G.R. Griffiths, Evaluation of biaxial stress failure surfaces for a glass fabric reinforced polyester resin under static and fatigue loading. J. Mater. Sci. 13(7), 1521–1537 (1978)

    Article  CAS  Google Scholar 

  19. Toru. Fujii, Fan. Lin, Fatigue behavior of a plain-woven glass fabric laminate under tension/torsion biaxial loading. J. Compos. Mater. 29(5), 573–590 (1995)

    Article  CAS  Google Scholar 

  20. T.P. Philippidis, A.P. Vassilopoulos, Fatigue strength prediction under multiaxial stress. J. Compos. Mater. 33(17), 1578–1599 (1999)

    Article  CAS  Google Scholar 

  21. T.P. Philippidis, A.P. Vassilopoulos, Fatigue of composite laminates under off-axis loading. Int. J. Fatigue 21(3), 253–262 (1999)

    Article  Google Scholar 

  22. T.P. Philippidis, A.P. Vassilopoulos, Fatigue design allowables of grp laminates based on stiffness degradation measurements. Compos. Sci. Technol. 60(15), 2819–2828 (2000)

    Article  CAS  Google Scholar 

  23. S.I. Andersen, P.W. Bach, W.J.A. Bonee, C.W. Kensche, H Lilholt, A. Lystrup, W. Sys, Fatigue of Materials and Components for Wind Turbine Rotor Blades, ed. by C.W. Kensce, Directorate-General XII, Science, Research and Development, EU-16684 EN, (1996)

    Google Scholar 

  24. S.W. Tsai, H.T. Hahn, Introduction to Composite Materials. Technomic (1980)

    Google Scholar 

  25. P.W. Bach, Glass and hybrid fibre performance. in Design of Composite Structures Against Fatigue. Applications to Wind Turbine Blades, ed. by R. M. Mayer (Antony Rowe Ltd., Chippenham, Wiltshire, 1996)

    Google Scholar 

  26. B. Harris, N. Gathercole, H. Reiter, T. Adam, Fatigue of carbon-fibre-reinforced plastics under block-loading conditions. Compos. Part A Appl. Sci. 28(4), 327–337 (1997)

    Article  Google Scholar 

  27. M. Ansell, I. Bond, P. Bonfield, C. Hacker, Fatigue properties of wood composites. in Design of Composite Structures Against Fatigue. Applications to Wind Turbine Blades, ed. by R.M. Mayer (Antony Rowe Ltd., Chippenham, Wiltshire, 1996)

    Google Scholar 

  28. C.W. Kensche, GFRP Fatigue Data for Certification. European Wind Energy Conference Proceedings, vol. I, (Thessaloniki, Greece, 1994) pp. 738–742

    Google Scholar 

  29. T.P. Philippidis, A.P. Vassilopoulos, Life prediction methodology for GFRP laminates under spectrum loading. Compos Part A–Appl S 35(6), 657–666 (2004)

    Article  Google Scholar 

  30. A.A. Ten Have, Wisper: Introducing variable-amplitude loading in wind turbine research. The 10th BWEA Conference, London, UK, Mar 23–25 (1988)

    Google Scholar 

  31. A.A. Ten Have. Wisper: A standardized fatigue load sequence for HAWT-blades. European Community Wind Energy Conference proceedings, Henring Denmark, June 6–10, (1988) pp. 448–452

    Google Scholar 

  32. V.A. Riziotis, S.G. Voutsinas, Fatigue loads on wind turbines of different control strategies operating in complex terrain. J. Wind. Eng. Ind. Aerod. 85(3), 211–240 (2000)

    Article  Google Scholar 

  33. T.P. Philippidis, D.J. Lekou, A.P. Vassilopoulos, EPET II #573, University of Patras, First Semester Progress Report, (in Greek) (1997)

    Google Scholar 

  34. Draft IEC 61400-1, Ed.2 (88/98/FDIS): Wind turbine generator systems–Part 1: Safety requirements, (1998)

    Google Scholar 

  35. P.W. Bach, P.A. Joose, D.R.V. van Delft. Fatigue lifetime of glass/polyester laminates for wind turbines. In the European Wind Energy Conference Proceedings, vol. I, (Thessaloniki, Greece, 1994) pp. 94–99

    Google Scholar 

  36. M. Poppen, P. Bach, Influence of spectral loading. in Design of Composite Structures Against Fatigue. Applications to Wind Turbine Blades, ed. by R.M. Mayer (1996)

    Google Scholar 

  37. R.P.L. Nijssen, OptiDAT–fatigue of wind turbine materials database, 2006. http://www.kc-wmc.nl/optimat_blades/index.htm

  38. J.E. Masters, K.L. Reifsneider, An investigation of cumulative damage development in quasi-isotropic graphite/epoxy laminates. in Damage in composite Materials, ASTM STP 775, ed. by K.L. Reifsneider, American Society for Testing and Materials (1982) pp. 40–62

    Google Scholar 

  39. L. Ferry, D. Rerreux, D. Varchon, N. Sicot, Fatigue behaviour of composite bars subjected to bending and torsion. Compos. Sci. Technol. 59(4), 575–582 (1999)

    Article  Google Scholar 

  40. G. Caprino, G. Giorleo, Fatigue lifetime of glass fabric/epoxy composites. Compos. Part A Appl. Sci. 30(3), 299–304 (1999)

    Article  Google Scholar 

  41. F. Gao, L. Boniface, S.L. Ogin, P.A. Smith, R.P. Greaves, Damage accumulation in woven fabric laminates under tensile loading: Part I. Observations of damage accumulation. Compos. Sci. Technol. 59(1), 123–136 (1999)

    Article  Google Scholar 

  42. E.K. Gamstedt, L.A. Berglund, T. Peijs, Fatigue mechanisms in unidirectional glass-fibre-reinforced polypropylene. Compos. Sci. Technol. 59(5), 759–768 (1999)

    Article  CAS  Google Scholar 

  43. M.M. Ratwani, H.P. Kan, Effect of stacking sequence on damage propagation and failure modes in composite laminates. in Damage in composite materials, ASTM STP 775, ed. by K.L. Reifsneider, (American Society fot Testing and Materials, 1982) pp. 40–62

    Google Scholar 

  44. A. Rotem, Prediction of laminate failure with the rotem failure criterion. Compos. Sci. Technol. 58(7), 1083–1094 (1998)

    Article  CAS  Google Scholar 

  45. T.P. Philippidis, V.N. Nikolaidis, J.G. kolaxis, Unsupervised pattern recognition techniques for the prediction of composite failure. J. Acoust. Emission. 17(1–2), 69–81 (1999)

    Google Scholar 

  46. G.J. Hahn, S.S. Shapiro, Statistical Models in Engineering (Wiley, New York, 1994)

    Google Scholar 

  47. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, in Numerical Recipes in Fortran. The Art of Scientific Computing, 2nd edn. (Cambridge University Press, Cambridge, MA, 1994)

    Google Scholar 

  48. F.J. Massey, The Kolmogorov-Smirnof test for goodness of fit. J. Am. Stat. Assoc. 46, 68–78 (1951)

    Article  Google Scholar 

  49. G.P. Sendeckyj, Life prediction for resin-matrix composite materials. in Fatigue of Composite Materials, Composite Materials Series 4, ed. by K.L. Reifsnider (Elsevier, Amsterdam, 1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastasios P. Vassilopoulos .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Vassilopoulos, A.P., Keller, T. (2011). Experimental Characterization of Fiber-Reinforced Composite Materials. In: Fatigue of Fiber-reinforced Composites. Engineering Materials and Processes. Springer, London. https://doi.org/10.1007/978-1-84996-181-3_2

Download citation

Publish with us

Policies and ethics