Skip to main content

Lethal Myocardial Reperfusion Injury

  • Chapter
  • First Online:
Management of Myocardial Reperfusion Injury

Abstract

Early coronary artery reperfusion reduces infarct size and mortality and improves left ventricular contractile performance after myocardial ischemia compared to permanent occlusion. However, reperfusion itself causes either an acceleration of injury that is not present during ischemia or causes de novo reversible and lethal injury to heart tissue. In vitro and in vivo experimental data strongly suggest that reperfusion injury is initiated during the first few moments of reperfusion and proceeds over minutes to hours in a cascade involving numerous interactive mechanisms leading to damage or death of myocardium and coronary vascular endothelium. This reperfusion injury contributes to contractile dysfunction, metabolic derangements, and ultimately cell death by necrosis, apoptosis, and autophagy. The mechanisms underlying lethal reperfusion injury include: (1) generation of ROS (oxygen paradox) from mitochondria, cytosolic and extracellular compartments, coronary vascular endothelium, and inflammatory cells such as neutrophils in a robust burst followed by sustained increased levels; (2) intracellular calcium accumulation (calcium paradox); (3) rapid normalization of tissue pH (pH paradox); (4) activation of proteolytic enzymes; (5) opening of the mitochondrial permeability transition pore; and (6) an inflammatory-like response. Although inflammatory cells and other cell types involved in inflammation (e.g., endothelium) contribute ROS and proinflammatory mediators during reperfusion, the role of inflammation in lethal reperfusion injury remains incompletely understood. ROS and calcium accumulation and rapid normalization of tissue pH which occur during the early moments of reperfusion create an environment in which the mitochondrial permeability transition pore opens, thereby promoting mitochondrial swelling and the release of proapoptotic substances which directs the cell to pursue a necrotic or an apoptotic pathway to death. Microvascular obliteration, a major physiological consequence of ischemia-reperfusion injury, may lead to no-reflow zones of myocardium and may also be involved in expansion of infarction as the duration of reperfusion increases and no-reflow zones expand. Age and gender may affect the heart’s tolerance to ischemia such that lethal injury is more severe or occurs after shorter periods of ischemia; some mechanisms of reperfusion injury may be more exaggerated in older animal models but is known to occur in humans. Comorbidities such as hypertension, hypercholesterolemia, and diabetes may also exaggerate the response to ischemia-reperfusion by mechanisms that are relevant to reperfusion such as increased oxidant stress at reflow, preexisting endothelial cell dysfunction that limits the bioavailability of nitric oxide (\(N{O}^{•}\)), or downregulation of the endogenous cardioprotective signaling pathways. Endogenous mechanisms exist that may combat reperfusion injury, such as the antioxidants glutathione and glutathione peroxidase, the autacoid adenosine, NO, and certain kinases (reperfusion injury salvage kinases, RISK). However, these are either not sufficiently stimulated or are rapidly overwhelmed. They can be enhanced by mechanical maneuvers such as postconditioning (a series of brief ischemia and reperfusion applied at the onset of reperfusion) or by pharmacological agents administered at the onset of reperfusion. Fully understanding the time course of reperfusion injury will help define and bracket the timing of effective reperfusion interventions. More fully understanding the mechanisms of reperfusion injury will help identify potential candidate therapies. Although previous clinical trials of drugs administered after percutaneous coronary interventions have revealed largely negative or inconclusive results, contemporary large-scale clinical trials should be undertaken with the immediacy and narrow window of reperfusion injury in mind, with the knowledge of effective concentrations of drugs at the target organ with consideration given to direct delivery to the target, and with appropriate duration of treatment to address immediate and delayed reperfusion injury.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Okrainec K, Banerjee DK, Eisenberg MJ. Coronary artery disease in the developing world. Am Heart J. 2004;148(1):7–15.

    PubMed  Google Scholar 

  2. Patel B, Kloner RA. Analysis of reported randomized trials of streptokinase therapy for acute myocardial-infarction in the 1980s. Am J Cardiol. 1987;59(6):501–4.

    PubMed  CAS  Google Scholar 

  3. Kloner RA, Forman MB, Gibbons RJ, et al. Impact of time to therapy and reperfusion modality on the efficacy of adenosine in acute myocardial infarction: the AMISTAD-2 trial. Eur Heart J. 2006;27(20):2400–5.

    PubMed  CAS  Google Scholar 

  4. Anderson JL, Marshall HW, Bray BE, et al. A randomized trial of intracoronary streptokinase in the treatment of acute myocardial infarction. N Engl J Med. 1983;308(22):1312–8.

    PubMed  CAS  Google Scholar 

  5. Markis JE, Malagold M, Parker JA, et al. Myocardial salvage after intracoronary thrombolysis with streptokinase in acute myocardial infarction. N Engl J Med. 1981;305(14):777–82.

    PubMed  CAS  Google Scholar 

  6. Kennedy JW, Ritchie JL, Davis KB, et al. The western Washington randomized trial of intracoronary streptokinase in acute myocardial infarction. N Engl J Med. 1985;312(17):1073–8.

    PubMed  CAS  Google Scholar 

  7. Braunwald E, Kloner RA. The stunned myocardium: prolonged, post-ischemic ventricular dysfunction. Circulation. 1982;66:1146–9.

    PubMed  CAS  Google Scholar 

  8. Kim YD, Fomsgaard JS, Heim KF, et al. Brief ischemia-reperfusion induces stunning of endothelium in canine coronary artery. Circulation. 1992;85:1473–82.

    PubMed  CAS  Google Scholar 

  9. DeFily DV, Chilian WM. Preconditioning protects coronary arteriolar endothelium from ischemia-reperfusion injury. Am J Physiol. 1993;265:H700–6.

    PubMed  CAS  Google Scholar 

  10. Tennant R, Wiggers C. The effect of coronary occlusion on myocardial contraction. Am J Physiol. 1935;112:351–61.

    Google Scholar 

  11. Jennings RB, Sommers HM, Smyth GA, et al. Myocardial necrosis induced by temporary occlusion of a coronary artery in the dog. Arch Pathol Lab Med. 1960;70:68–78.

    CAS  Google Scholar 

  12. Hearse DJ, Humphrey SM, Chain EB. Abrupt reoxygenation of the anoxic potassium-arrested perfused rat heart: a study of myocardial enzyme release. J Mol Cell Cardiol. 1973;5(4):395–407.

    PubMed  CAS  Google Scholar 

  13. Cooley DA, Ruel GJ, Wukasch DC. Ischemic contracture of the heart: “stone heart”. Am J Cardiol. 1972;29:575–7.

    PubMed  CAS  Google Scholar 

  14. Gross GJ, Auchampach JA. Reperfusion injury: does it exist? J Mol Cell Cardiol. 2007;42(1):12–8.

    PubMed  CAS  Google Scholar 

  15. Zhao ZQ, Corvera JS, Halkos ME, et al. Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am J Physiol Heart Circ Physiol. 2003;285(2):H579–88.

    PubMed  CAS  Google Scholar 

  16. Staat P, Rioufol G, Piot C, et al. Postconditioning the human heart. Circulation. 2005;112:2143–8.

    PubMed  Google Scholar 

  17. Jordan JE, Zhao ZQ, Sato H, et al. Adenosine A2 receptor activation attenuates reperfusion injury by inhibiting neutrophil accumulation, superoxide generation and coronary endothelial adherence. J Pharmacol Exp Ther. 1997;280(1):301–9.

    PubMed  CAS  Google Scholar 

  18. Budde JM, Velez DA, Zhao Z, et al. Comparative study of AMP579 and adenosine in inhibition of neutrophil-mediated vascular and myocardial injury during 24 h of reperfusion. Cardiovasc Res. 2000;47(2):294–305.

    PubMed  CAS  Google Scholar 

  19. Gomez L, Thibault H, Gharib A, et al. Inhibition of mitochondrial permeability transition improves functional recovery and reduces mortality following acute myocardial infarction in mice. Am J Physiol Heart Circ Physiol. 2007;293(3):H1654–61.

    PubMed  CAS  Google Scholar 

  20. Piot C, Croisille P, Staat P, et al. Effect of cyclosporine on reperfusion injury in acute myocardial infarction. N Engl J Med. 2008;359(5):473–81.

    PubMed  CAS  Google Scholar 

  21. Vinten-Johansen J, Rosenkranz ER, Buckberg GD, et al. Metabolic and histochemical benefits of regional blood cardioplegic reperfusion without cardiopulmonary bypass. J Thorac Cardiovasc Surg. 1986;92(3 Pt 2):535–42.

    PubMed  CAS  Google Scholar 

  22. Yellon DM, Hausenloy DJ. Myocardial reperfusion injury. N Engl J Med. 2007;357(11):1121–35.

    PubMed  CAS  Google Scholar 

  23. Buckberg GD. Studies of controlled reperfusion after ischemia: I. when is cardiac muscle damaged irreversibly? J Thorac Cardiovasc Surg. 1986;92:483–7.

    PubMed  CAS  Google Scholar 

  24. Buckberg GD. Myocardial protection: an overview. Semin Thorac Cardiovasc Surg. 1993;5:98–106.

    PubMed  CAS  Google Scholar 

  25. Schlack W, Uebing A, Schafer M, et al. Regional contractile blockade at the onset of reperfusion reduces infarct size in the dog heart. Pflugers Archiv – Eur J Physiol. 1994;428:134–41.

    CAS  Google Scholar 

  26. Piper HM, Kasseckert S, Abdallah Y. The sarcoplasmic reticulum as the primary target of reperfusion protection. Cardiovasc Res. 2006;70(2):170–3.

    PubMed  CAS  Google Scholar 

  27. Ruiz-Meana M, Garcia-Dorado D. Translational cardiovascular medicine (II). Pathophysiology of ischemia-reperfusion injury: new therapeutic options for acute myocardial infarction. Rev Esp Cardiol. 2009;62(2):199–209.

    PubMed  Google Scholar 

  28. Zhao ZQ, Morris CD, Budde JM, et al. Inhibition of myocardial apoptosis reduces infarct size and improves regional contractile dysfunction during reperfusion. Cardiovasc Res. 2003;59:132–42.

    PubMed  CAS  Google Scholar 

  29. Zhao ZQ, Velez DA, Wang NP, et al. Progressively developed myocardial apoptotic cell death during late phase of reperfusion. Apoptosis. 2001;6(4):279–90.

    PubMed  CAS  Google Scholar 

  30. Freude B, Masters TN, Robicsek F, et al. Apoptosis is initiated by myocardial ischemia and executed during reperfusion. J Mol Cell Cardiol. 2000;32(2):197–208.

    PubMed  CAS  Google Scholar 

  31. Zhao ZQ, Morris CD, Budde JM, Wang NP, Muraki S, Sun HY, Guyton RA. Inhibition of myocardial apoptosis reduces infarct size and improves regional contractile dysfunction during reperfusion. Cardiovasc Res. 2003;59:132–142.

    Google Scholar 

  32. Reimer KA, Lowe JE, Rasmussen MM, et al. The wavefront phenomenon of ischemic cell death. 1. Myocardial infarct size vs duration of coronary occlusion in dogs. Circulation. 1977;56(5):786–94.

    PubMed  CAS  Google Scholar 

  33. Reimer KA, Jennings RB. The “wavefront phenomenon” of myocardial ischemic cell death. II. Transmural progression of necrosis within the framework of ischemic bed size (myocardial at risk) and collateral flow. Lab Invest. 1979;40(6):633–44.

    PubMed  CAS  Google Scholar 

  34. Backstrom T, Lockowandt U, Liska J, et al. Monitoring of porcine myocardial ischemia and reperfusion by intravasal microdialysis. Scand Cardiovasc J. 2002;36(1):27–34.

    PubMed  Google Scholar 

  35. Klein HH, Schubothe M, Nebendahl K, et al. Temporal and spatial development of myocardial infarcts in porcine hearts without significant collateral blood flow. Tex Heart Inst J. 1984;11(2):154–9.

    PubMed  CAS  Google Scholar 

  36. Ganz W, Watanabe I, Kanamasa K, et al. Does reperfusion extend necrosis? A study in a single territory of myocardial ischemia: half reperfused and half not reperfused. Circulation. 1990;82:1020–33.

    PubMed  CAS  Google Scholar 

  37. Miura T. Does reperfusion induce myocardial necrosis? Circulation. 1990;82:1070–2.

    PubMed  CAS  Google Scholar 

  38. Przyklenk K. Lethal myocardial “reperfusion injury”: the opinions of good men. J Thromb Thrombolysis. 1997;4:5–6.

    PubMed  Google Scholar 

  39. Vinten-Johansen J, Johnston WE, Mills SA, et al. Reperfusion injury after temporary coronary occlusion. J Thorac Cardiovasc Surg. 1988;95(6):960–8.

    PubMed  CAS  Google Scholar 

  40. Van den Hoek TL, Shao Z, Li C, et al. Reperfusion injury on cardiac myocytes after simulated ischemia. Am J Physiol. 1996;270(4 Pt 2):H1334–41.

    Google Scholar 

  41. Matsumura K, Jeremy RW, Schaper J, et al. Progression of myocardial necrosis during reperfusion of ischemic myocardium. Circulation. 1998;97(795):804.

    Google Scholar 

  42. Zhao ZQ, Nakamura M, Wang NP, et al. Dynamic progression of contractile and endothelial dysfunction and infarct extension in the late phase of reperfusion. J Surg Res. 2000;94(2):133–44.

    PubMed  CAS  Google Scholar 

  43. Fliss H, Gattinger D. Apoptosis in ischemic and reperfused rat myocardium. Circ Res. 1996;79:949–56.

    PubMed  CAS  Google Scholar 

  44. Zhao ZQ, Nakamura M, Wang NP, et al. Reperfusion induces myocardial apoptotic cell death. Cardiovasc Res. 2000;45(3):651–60.

    PubMed  CAS  Google Scholar 

  45. Kin H, Zhao ZQ, Sun HY, et al. Postconditioning attenuates myocardial ischemia-reperfusion injury by inhibiting events in the early minutes of reperfusion. Cardiovasc Res. 2004;62(1):74–85.

    PubMed  CAS  Google Scholar 

  46. Darling CE, Jiang R, Maynard M, et al. Postconditioning via stuttering reperfusion limits myocardial infarct size in rabbit hearts: role of ERK1/2. Am J Physiol Heart Circ Physiol. 2005;289(4):H1618–26.

    PubMed  CAS  Google Scholar 

  47. Krug A, Du Mesnil de Rochemont Du, Korb G. Blood supply of the myocardium after temporary coronary occlusion. Circ Res. 1966;19(1):57–62.

    PubMed  CAS  Google Scholar 

  48. Ames 3rd A, Wright RL, Kowada M, et al. Cerebral ischemia. II. The no-reflow phenomenon. Am J Pathol. 1968;52(2):437–53.

    PubMed  Google Scholar 

  49. Kloner RA, Ganote CE, Jennings RB. The “no-reflow” phenomenon after temporary coronary occlusion in the dog. J Clin Invest. 1974;54:1496–508.

    PubMed  CAS  Google Scholar 

  50. Dillon WC, Hadian D, Ritchie ME. Refractory no-reflow successfully treated with local infusion of high-dose adenosine and verapamil – a case report. Angiology. 2001;52(2):137–41.

    PubMed  CAS  Google Scholar 

  51. Jaffe R, Charron T, Puley G, et al. Microvascular obstruction and the no-reflow phenomenon after percutaneous coronary intervention. Circulation. 2008;117(24):3152–6.

    PubMed  Google Scholar 

  52. Reffelmann T, Kloner RA. The no-reflow phenomenon: a basic mechanism of myocardial ischemia and reperfusion. Basic Res Cardiol. 2006;101(5):359–72.

    PubMed  Google Scholar 

  53. Abbo KM, Dooris M, Glazier S, et al. Features and outcome of no-reflow after percutaneous coronary intervention. Am J Cardiol. 1995;75(12):778–82.

    PubMed  CAS  Google Scholar 

  54. Morishima I, Sone T, Okumura K, et al. Angiographic no-reflow phenomenon as a predictor of adverse long-term outcome in patients treated with percutaneous transluminal coronary angioplasty for first acute myocardial infarction. J Am Coll Cardiol. 2000;36(4):1202–9.

    PubMed  CAS  Google Scholar 

  55. Zweier JL, Kuppusamy P, Lutty GA. Measurement of endothelial cell free radical generation: evidence for a central mechanism of free radical injury in postischemic tissues. Proc Natl Acad Sci USA. 1988;85(11):4046–50.

    PubMed  CAS  Google Scholar 

  56. Zweier JL, Broderick R, Kuppusamy P, et al. Determination of the mechanism of free radical generation in human aortic endothelial cells exposed to anoxia and reoxygenation. J Biol Chem. 1994;269(39):24156–62.

    PubMed  CAS  Google Scholar 

  57. Berry CE, Hare JM. Xanthine oxidoreductase and cardiovascular disease: molecular mechanisms and pathophysiological implications. J Physiol. 2004;555(Pt 3):589–606.

    PubMed  CAS  Google Scholar 

  58. Xia Y, Dawson VL, Dawson TM, et al. Nitric oxide synthase generates superoxide and nitric oxide in arginine-depleted cells leading to peroxynitrite-mediated cellular injury. Proc Natl Acad Sci USA. 1996;93(13):6770–4.

    PubMed  CAS  Google Scholar 

  59. Ytrehus K, Myklebust R, Mjos OD. Influence of oxygen radicals generated by xanthine oxidase in the isolated perfused rat heart. Cardiovasc Res. 1986;20(8):597–603.

    PubMed  CAS  Google Scholar 

  60. Corretti MC, Koretsune Y, Kusuoka H, et al. Glycolytic inhibition and calcium overload as consequences of exogenously generated free radicals in rabbit hearts. J Clin Invest. 1991;88(3):1014–25.

    PubMed  CAS  Google Scholar 

  61. Lucas SK, Gardner TJ, Flaherty JT, et al. Beneficial effects of mannitol administration during reperfusion after ischemic arrest. Circulation. 1980;62:I-34–41.

    CAS  Google Scholar 

  62. Stewart JR, Blackwell WH, Crute SL, et al. Inhibition of surgically induced ischemia/reperfusion injury by oxygen free radical scavengers. J Thorac Cardiovasc Surg. 1983;86(2):262–72.

    PubMed  CAS  Google Scholar 

  63. Jolly SR, Kane WJ, Bailie MB, et al. Canine myocardial reperfusion injury: its reduction by the combined administration of superoxide dismutase and catalase. Circ Res. 1984;54:277–85.

    PubMed  CAS  Google Scholar 

  64. Mitsos SE, Fantone JC, Gallagher KP, et al. Canine myocardial reperfusion injury: protection by a free radical scavenger, N-2-Mercaptopropionyl glycine. J Cardiovasc Pharmacol. 1986;8:978–88.

    PubMed  CAS  Google Scholar 

  65. Ambrosio G, Flaherty JT, Duilio C, et al. Oxygen radicals generated at reflow induce peroxidation of membrane lipids in reperfused hearts. J Clin Invest. 1991;87(6):2056–66.

    PubMed  CAS  Google Scholar 

  66. Zweier JL, Flaherty JT, Weisfeldt ML. Direct measurement of free radical generation following reperfusion of ischemic myocardium. Proc Natl Acad Sci USA. 1987;84(5):1404–7.

    PubMed  CAS  Google Scholar 

  67. Grill HP, Zweier JL, Kuppusamy P, et al. Direct measurement of myocardial free radical generation in an in vivo model: effects of postischemic reperfusion and treatment with human recombinant superoxide dismutase. J Am Coll Cardiol. 1992;20:1604–11.

    PubMed  CAS  Google Scholar 

  68. Ferrari R, Alfieri O, Curello S, et al. Occurrence of oxidative stress during reperfusion of the human heart. Circulation. 1990;81(1):201–11.

    PubMed  CAS  Google Scholar 

  69. Serrano Jr CV, Mikhail EA, Wang P, et al. Superoxide and hydrogen peroxide induce CD18-mediated adhesion in the postischemic heart. Biochim Biophys Acta. 1996;1316(3):191–202.

    PubMed  Google Scholar 

  70. Ma XL, Tsao PS, Viehman GE, et al. Neutrophil-mediated vasoconstriction and endothelial dysfunction in low-flow perfusion-reperfused cat coronary artery. Circ Res. 1991;69:95–106.

    PubMed  CAS  Google Scholar 

  71. Ma XL, Weyrich AS, Lefer DJ, et al. Diminished basal nitric oxide release after myocardial ischemia and reperfusion promotes neutrophil adherence to coronary endothelium. Circ Res. 1993;72(2):403–12.

    PubMed  CAS  Google Scholar 

  72. Johnson III G, Tsao PS, Lefer AM. Cardioprotective effects of authentic nitric oxide in myocardial ischemia with reperfusion. Crit Care Med. 1991;19:244–52.

    PubMed  Google Scholar 

  73. Jones SP, Girod WG, Palazzo AJ, et al. Myocardial ischemia-reperfusion injury is exacerbated in absence of endothelial cell nitric oxide synthase. Am J Physiol. 1999;276(5 Pt 2):H1567–73.

    PubMed  CAS  Google Scholar 

  74. Williams MW, Taft CS, Ramnauth S, et al. Endogenous nitric oxide (NO) protects against ischaemia-reperfusion injury in the rabbit. Cardiovasc Res. 1995;30(1):79–86.

    PubMed  CAS  Google Scholar 

  75. Nakanishi K, Vinten-Johansen J, Lefer DJ, et al. Intracoronary L-arginine during reperfusion improves endothelial function and reduces infarct size. Am J Physiol. 1992;263(6 Pt 2):H1650–8.

    PubMed  CAS  Google Scholar 

  76. Pernow J, Uriuda Y, Wang QD, et al. The protective effect of L-arginine on myocardial injury and endothelial function following ischaemia and reperfusion in the pig. Eur Heart J. 1994;15:1712–9.

    PubMed  CAS  Google Scholar 

  77. Lefer AM. Attenuation of myocardial ischemia-reperfusion injury with nitric oxide replacement therapy (Review). Ann Thorac Surg. 1995;60:847–51.

    PubMed  CAS  Google Scholar 

  78. Draper NJ, Shah AM. Beneficial effects of a nitric oxide donor on recovery of contractile function following brief hypoxia in isolated rat heart. J Mol Cell Cardiol. 1997;29:1195–203.

    PubMed  CAS  Google Scholar 

  79. Shen AC, Jennings RB. Kinetics of calcium accumulation in acute myocardial ischemic injury. Am J Pathol. 1972;67:441–52.

    PubMed  CAS  Google Scholar 

  80. Inserte J, Garcia-Dorado D, Hernando V, et al. Calpain-mediated impairment of Na+/K+ − ATPase activity during early reperfusion contributes to cell death after myocardial ischemia. Circ Res. 2005;97(5):465–73.

    PubMed  CAS  Google Scholar 

  81. Klein HH, Pich S, Lindert S, et al. Treatment of reperfusion injury with intracoronary calcium channel antagonists and reduced coronary free calcium concentration in regionally ischemic, reperfused porcine hearts. J Am Coll Cardiol. 1989;13(6):1395–401.

    PubMed  CAS  Google Scholar 

  82. Nakanishi K, Lefer DJ, Johnston WE, et al. Transient hypocalcemia during the initial phase of reperfusion extends myocardial necrosis after 2 hours of coronary occlusion. Coron Artery Dis. 1991;2:1009–21.

    Google Scholar 

  83. Satoh N, Kitada Y. Cardioprotective effect of MCC-135 is associated with inhibition of Ca2+ overload in ischemic/reperfused hearts. Eur J Pharmacol. 2004;499(1–2):179–87.

    PubMed  CAS  Google Scholar 

  84. Gumina RJ, Mizumura T, Beier N, et al. A new sodium/hydrogen exchange inhibitor, EMD 85131, limits infarct size in dogs when administered before or after coronary artery occlusion. J Pharmacol Exp Ther. 1998;286(1):175–83.

    PubMed  CAS  Google Scholar 

  85. Klein HH, Pich S, Bohle RM, et al. Myocardial protection by Na+−H+ exchange inhibition in ischemic, reperfused porcine hearts. Circulation. 1995;92:912–7.

    PubMed  CAS  Google Scholar 

  86. Theroux P, Chaitman BR, Danchin D, et al. Inhibition of the sodium-hydrogen exchanger with cariporide to prevent myocardial infarction in high-risk ischemic situations. Circulation. 2000;102:3032–8.

    PubMed  CAS  Google Scholar 

  87. Zeymer U, Suryapranata H, Monassier JP, et al. The Na+/H+ exchange inhibitor eniporide as an adjunct to early reperfusion therapy for acute myocardial infarction – results of the evaluation of the safety and cardioprotective effects of eniporide in acute myocardial infarction (ESCAMI) trial. J Am Coll Cardiol. 2001;38(6):1644–50.

    PubMed  CAS  Google Scholar 

  88. Jang IK, Weissman NJ, Picard MH, et al. A randomized, double-blind, placebo-controlled study of the safety and efficacy of intravenous MCC-135 as an adjunct to primary percutaneous coronary intervention in patients with acute myocardial infarction: evaluation of MCC-135 for left ventricular salvage in acute myocardial infarction (EVOLVE). Am Heart J. 2008;155(1):113.e1–e8.

    Google Scholar 

  89. Cohen MV, Yang XM, Downey JM. The pH hypothesis of postconditioning: staccato reperfusion reintroduces oxygen and perpetuates myocardial acidosis. Circulation. 2007;115(14):1895–903.

    PubMed  Google Scholar 

  90. Inserte J, Barba I, Hernando V, et al. Delayed recovery of intracellular acidosis during reperfusion prevents calpain activation and determines protection in postconditioned myocardium. Cardiovasc Res. 2009;81(1):116–22.

    PubMed  CAS  Google Scholar 

  91. Vinten-Johansen J, Zhao ZQ, Jiang R, et al. Preconditioning and postconditioning: innate cardioprotection from ischemia-reperfusion injury. J Appl Physiol. 2007;103(4):1441–8.

    PubMed  Google Scholar 

  92. Vinten-Johansen J, Lefer DJ, Nakanishi K, et al. Controlled coronary hydrodynamics at the time of reperfusion reduces postischemic injury. Coron Artery Dis. 1992;3:1081–93.

    Google Scholar 

  93. Sato H, Jordan JE, Zhao ZQ, et al. Gradual reperfusion reduces infarct size and endothelial injury but augments neutrophil accumulation. Ann Thorac Surg. 1997;64(4):1099–107.

    PubMed  CAS  Google Scholar 

  94. Musiolik J, van Caster P, Skyschally A, et al. Reduction of infarct size by gentle reperfusion without activation of reperfusion injury salvage kinases in pigs. Cardiovasc Res. 2010;85:110–7.

    PubMed  CAS  Google Scholar 

  95. Okamoto F, Allen BS, Buckberg GD, et al. Studies of controlled reperfusion after ischemia. XIV. Reperfusion conditions: importance of ensuring gentle versus sudden reperfusion during relief of coronary occlusion. J Thorac Cardiovasc Surg. 1986;92:613–20.

    PubMed  CAS  Google Scholar 

  96. Barrabes JA, Garcia-Dorado D, Ruiz-Meana M, et al. Myocardial segment shrinkage during coronary reperfusion in situ. Relation to hypercontracture and myocardial necrosis. Pflugers Arch. 1996;431(4):519–26.

    PubMed  CAS  Google Scholar 

  97. Inserte J, Garcia-Dorado D, Ruiz-Meana M, et al. Ischemic preconditioning attenuates calpain-mediated degradation of structural proteins through a protein kinase A-dependent mechanism. Cardiovasc Res. 2004;64(1):105–14.

    PubMed  CAS  Google Scholar 

  98. Ruiz-Meana M, Garcia-Dorado D, Hofstaetter B, et al. Propagation of cardiomyocyte hypercontracture by passage of Na(+) through gap junctions. Circ Res. 1999;85(3):280–7.

    PubMed  CAS  Google Scholar 

  99. Garcia-Dorado D, Gonzalez MA, Barrabes JA, et al. Prevention of ischemic rigor contracture during coronary occlusion by inhibition of Na+−H+ exchange. Cardiovasc Res. 1997;35:80–9.

    PubMed  CAS  Google Scholar 

  100. Inserte J, Garcia-Dorado D, Ruiz-Meana M, et al. Effect of inhibition of Na+/Ca2+ exchanger at the time of myocardial reperfusion on hypercontracture and cell death. Cardiovasc Res. 2002;55:739–48.

    PubMed  CAS  Google Scholar 

  101. Garcia-Dorado D, Theroux P, Duran JM, et al. Selective inhibition of the contractile apparatus. A new approach to modification of infarct size, infarct composition, and infarct geometry during coronary artery occlusion and reperfusion. Circulation. 1992;85:1160–74.

    PubMed  CAS  Google Scholar 

  102. Siegmund B, Klietz T, Schwartz P, et al. Temporary contractile blockade prevents hypercontracture in anoxic-reoxygenated cardiomyocytes. Am J Physiol. 1991;260(2 Pt 2):H426–35.

    PubMed  CAS  Google Scholar 

  103. Sebbag L, Verbinski SG, Reimer KA, et al. Protection of ischemic myocardium in dogs using intracoronary 2,3-butanedione monoxime (BDM). J Mol Cell Cardiol. 2003;35(2):165–76.

    PubMed  CAS  Google Scholar 

  104. Ladilov Y, Efe O, Schafer C, et al. Reoxygenation-induced rigor-type contracture. J Mol Cell Cardiol. 2003;35(12):1481–90.

    PubMed  CAS  Google Scholar 

  105. Kaiser L, Sparks Jr HV. Endothelial cells: not just a cellophane wrapper. Arch Intern Med. 1987;147:569–73.

    PubMed  CAS  Google Scholar 

  106. Galley HF, Webster NR. Physiology of the endothelium. Br J Anaesth. 2004;93(1):105–13.

    PubMed  CAS  Google Scholar 

  107. Ku DD. Coronary vascular reactivity after acute myocardial ischemia. Science. 1982;218:576–8.

    PubMed  CAS  Google Scholar 

  108. Dignan RJ, Kadletz M, Dyke CM, et al. Microvascular dysfunction after myocardial ischemia. J Thorac Cardiovasc Surg. 1995;109(5):892–7.

    PubMed  CAS  Google Scholar 

  109. Dignan RJ, Dyke CM, Abd-Elfattah AS, et al. Coronary artery endothelial cell and smooth muscle dysfunction after global myocardial ischemia. Ann Thorac Surg. 1992;53:311–7.

    PubMed  CAS  Google Scholar 

  110. Pearson PJ, Schaff HV, Vanhoutte PM. Acute impairment of endothelium-dependent relaxations to aggregating platelets following reperfusion injury in canine coronary arteries. Circ Res. 1990;67(2):385–93.

    PubMed  CAS  Google Scholar 

  111. Pearson PJ, Schaff HV, Vanhoutte PM. Long-term impairment of endothelium-dependent relaxations to aggregating platelets after reperfusion injury in canine coronary arteries. Circulation. 1990;81(6):1921–7.

    PubMed  CAS  Google Scholar 

  112. Sobey CG, Dusting GJ, Grossman HJ, et al. Impaired vasodilation of epicardial coronary arteries and resistance vessels following myocardial ischemia and reperfusion in anesthetized dogs. Coron Artery Dis. 1990;1:363–74.

    Google Scholar 

  113. Boyle EM, Pohlman TH, Cornejo CJ, et al. Endothelial cell injury in cardiovascular surgery: ischemia-reperfusion. Ann Thorac Surg. 1996;62:1868–75.

    PubMed  Google Scholar 

  114. Boyle EM, Verrier ED, Spiess BD. Endothelial cell injury in cardiovascular surgery: the procoagulant response. Ann Thorac Surg. 1996;62:1549–57.

    PubMed  Google Scholar 

  115. Sellke FW, Boyle EM, Verrier ED. Endothelial cell injury in cardiovascular surgery: the pathophysiology of vasomotor dysfunction. Ann Thorac Surg. 1996;62:1222–8.

    PubMed  CAS  Google Scholar 

  116. Verrier E. The microvascular cell and ischemia-reperfusion injury. J Cardiovasc Pharmacol. 1996;27 suppl 1:S26–30.

    PubMed  CAS  Google Scholar 

  117. Boyle EM, Pohlman TH, Johnson MC, et al. Endothelial cell injury in cardiovascular surgery: the systemic inflammatory response. Ann Thorac Surg. 1997;63:277–84.

    PubMed  Google Scholar 

  118. Lacerda L, Somers S, Opie LH, et al. Ischaemic postconditioning protects against reperfusion injury via the SAFE pathway. Cardiovasc Res. 2009;84(2):201–8.

    PubMed  CAS  Google Scholar 

  119. Tsao PS, Aoki N, Lefer DJ, et al. Time course of endothelial dysfunction and myocardial injury during myocardial ischemia and reperfusion in the cat. Circulation. 1990;82:1402–12.

    PubMed  CAS  Google Scholar 

  120. Kaeffer N, Richard V, Francois A, et al. Preconditioning prevents chronic reperfusion-induced coronary endothelial dysfunction in rats. Am J Physiol. 1996;271:H842–9.

    PubMed  CAS  Google Scholar 

  121. Scarabelli T, Stephanou A, Rayment N, et al. Apoptosis of endothelial cells precedes myocyte cell apoptosis in ischemia/reperfusion injury. Circulation. 2001;104(3):253–6.

    PubMed  CAS  Google Scholar 

  122. Weyrich AS, Buerke M, Albertine KH, et al. Time course of coronary vascular endothelial adhesion molecule expression during reperfusion of the ischemic feline myocardium. J Leukoc Biol. 1995;57:45–55.

    PubMed  CAS  Google Scholar 

  123. Chatelain P, Latour JG, Tran D, et al. Neutrophil accumulation in experimental myocardial infarcts: relation with extent of injury and effect of reperfusion. Circulation. 1987;75(5):1083–90.

    PubMed  CAS  Google Scholar 

  124. Sheridan FM, Cole PG, Ramage D. Leukocyte adhesion to the coronary microvasculature during ischemia and reperfusion in an in vivo canine model. Circulation. 1996;93(10):1784–7.

    PubMed  CAS  Google Scholar 

  125. Shandelya SM, Kuppusamy P, Weisfeldt ML, et al. Evaluation of the role of polymorphonuclear leukocytes on contractile function in myocardial reperfusion injury. Evidence for plasma-mediated leukocyte activation. Circulation. 1993;87:536–46.

    PubMed  CAS  Google Scholar 

  126. Shandelya SM, Kuppusamy P, Herskowitz A, et al. Soluble complement receptor type 1 inhibits the complement pathway and prevents contractile failure in the postischemic heart. Evidence that complement activation is required for neutrophil-mediated reperfusion injury. Circulation. 1993;88:2812–26.

    PubMed  CAS  Google Scholar 

  127. Vinten-Johansen J. Involvement of neutrophils in the pathogenesis of lethal myocardial reperfusion injury. Cardiovasc Res. 2004;61(3):481–97.

    PubMed  CAS  Google Scholar 

  128. Botto N, Sbrana S, Trianni G, et al. An increased platelet-leukocytes interaction at the culprit site of coronary artery occlusion in acute myocardial infarction: a pathogenic role for “no-reflow” phenomenon? Int J Cardiol. 2007;117(1):123–30.

    PubMed  Google Scholar 

  129. Siminiak T, Egdell RM, O’Gorman DJ, et al. Plasma-mediated neutrophil activation during acute myocardial infarction: role of platelet-activating factor. Clin Sci (Lond). 1995;89(2):171–6.

    CAS  Google Scholar 

  130. Siminiak T, Zozulinska D, Zeromska M, et al. Evidence for plasma-mediated neutrophil superoxide anion production during myocardial infarction. Cardiology. 1993;82(6):377–82.

    PubMed  CAS  Google Scholar 

  131. Chang LT, Chua S, Sheu JJ, et al. Level and prognostic value of serum myeloperoxidase in patients with acute myocardial infarction undergoing primary percutaneous coronary intervention. Circ J. 2009;73(4):726–31.

    PubMed  CAS  Google Scholar 

  132. Dinerman JL, Mehta JL, Saldeen TGP, et al. Increased neutrophil elastase release in unstable angina pectoris and acute myocardial infarction. J Am Coll Cardiol. 1990;15(7):1559–63.

    PubMed  CAS  Google Scholar 

  133. Bell D, Jackson M, Millar AM, et al. The acute inflammatory response to myocardial infarction: imaging with indium-111 labelled autologous neutrophils. Br Heart J. 1987;57(1):23–7.

    PubMed  CAS  Google Scholar 

  134. Jaremo P, Nilsson O. Interleukin-6 and neutrophils are associated with long-term survival after acute myocardial infarction. Eur J Intern Med. 2008;19(5):330–3.

    PubMed  CAS  Google Scholar 

  135. Granfeldt A, Jiang R, Wang NP, et al. Inhibition of neutrophils is critical to the in vivo cardioprotection of postconditioning. Circulation. 2008;118(18 Meeting Abstracts):S292.

    Google Scholar 

  136. Jolly SR, Kane WJ, Hook BG, et al. Reduction of myocardial infarct size by neutrophil depletion: effect of duration of occlusion. Am Heart J. 1986;112(4):682–90.

    PubMed  CAS  Google Scholar 

  137. Romson JL, Hook BG, Kunkel SL, et al. Reduction of the extent of ischemic myocardial injury by neutrophil depletion in the dog. Circulation. 1983;67(5):1016–23.

    PubMed  CAS  Google Scholar 

  138. De Lorgeril M, Basmadjian A, Lavallee M, et al. Influence of leukopenia on collateral flow, reperfusion flow, reflow ventricular fibrillation, and infarct size in dogs. Am Heart J. 1989;117(3):523–32.

    PubMed  Google Scholar 

  139. Litt MR, Jeremy RW, Weisman HF, et al. Neutrophil depletion limited to reperfusion reduces myocardial infarct size after 90 minutes of ischemia: evidence for neutrophil-mediated reperfusion injury. Circulation. 1989;80:1816–27.

    PubMed  CAS  Google Scholar 

  140. Lefer DJ, Flynn DM, Buda AJ. Effects of a monoclonal antibody directed against P-selectin after myocardial ischemia and reperfusion. Am J Physiol. 1996;270(1 Pt 2):H88–98.

    PubMed  CAS  Google Scholar 

  141. Weyrich AS, Ma XY, Lefer DJ, et al. In vivo neutralization of P-selectin protects feline heart and endothelium in myocardial ischemia and reperfusion injury. J Clin Invest. 1993;91(6):2620–9.

    PubMed  CAS  Google Scholar 

  142. Palazzo AJ, Jones SP, Girod WG, et al. Myocardial ischemia-reperfusion injury in CD18- and ICAM-1-deficient mice. Am J Physiol. 1998;275(6 Pt 2):H2300–7.

    PubMed  CAS  Google Scholar 

  143. Zhao ZQ, Lefer DJ, Sato H, et al. Monoclonal antibody to ICAM-1 preserves postischemic blood flow and reduces infarct size after ischemia-reperfusion in rabbit. J Leukoc Biol. 1997;62(3):292–300.

    PubMed  CAS  Google Scholar 

  144. Palazzo AJ, Jones SP, Anderson DC, et al. Coronary endothelial P-selectin in pathogenesis of myocardial ischemia-reperfusion injury. Am J Physiol. 1998;275(5 Pt 2):H1865–72.

    PubMed  CAS  Google Scholar 

  145. Briaud SA, Ding ZM, Michael LH, et al. Leukocyte trafficking and myocardial reperfusion injury in ICAM-1/P-selectin-knockout mice. Am J Physiol Heart Circ Physiol. 2001;280(1):H60–7.

    PubMed  CAS  Google Scholar 

  146. Arai M, Masui Y, Goldschmidt-Clermont P, et al. P-selectin inhibition prevents early neutrophil activation but provides only modest protection against myocardial injury in dogs with ischemia and forty-eight hours reperfusion. J Am Coll Cardiol. 1999;34(1):280–8.

    PubMed  CAS  Google Scholar 

  147. Jones SP, Girod WG, Granger DN, et al. Reperfusion injury is not affected by blockade of P-selectin in the diabetic mouse heart. Am J Physiol. 1999;277(2 Pt 2):H763–9.

    PubMed  CAS  Google Scholar 

  148. Tanaka M, Brooks SE, Richard VJ, et al. Effect of anti-CD18 antibody on myocardial neutrophil accumulation and infarct size after ischemia and reperfusion in dogs. Circulation. 1993;87:526–35.

    PubMed  CAS  Google Scholar 

  149. Baxter GF. The neutrophil as a mediator of myocardial ischemia-reperfusion injury: time to move on. Basic Res Cardiol. 2002;97(4):268–75.

    PubMed  Google Scholar 

  150. Lefer DJ. Do neutrophils contribute to myocardial reperfusion injury? Basic Res Cardiol. 2002;97(4):263–7.

    PubMed  Google Scholar 

  151. Harlan JM, Winn RK. Leukocyte-endothelial interactions: clinical trials of anti-adhesion therapy. Crit Care Med. 2002;30(5):S214–9.

    PubMed  CAS  Google Scholar 

  152. Baran KW, Nguyen M, McKendall GR, et al. Double-blind, randomized trial of an anti-CD18 antibody in conjunction with recombinant tissue plasminogen activator for acute myocardial infarction. Limitation of myocardial infarction following thrombolysis in acute myocardial infarction (LIMIT AMI) study. Circulation. 2001;104:2778–83.

    PubMed  CAS  Google Scholar 

  153. Buerke M, Pruefer D, Dahm M, et al. Serine protease inhibitor (Aprotinin) attenuates myocardial necrosis and apoptosis following ischaemia and long-term reperfusion in rats. Eur Heart J. 1999;20(P996):163.

    Google Scholar 

  154. Arslan F, Keogh B, McGuirk P, et al. TLR2 and TLR4 in ischemia reperfusion injury. Mediators Inflamm. 2010;2010:704202.

    PubMed  CAS  Google Scholar 

  155. Arslan F, Smeets MB, O’Neill LA, et al. Myocardial ischemia/reperfusion injury is mediated by leukocytic toll-like receptor-2 and reduced by systemic administration of a novel anti-toll-like receptor-2 antibody. Circulation. 2010;121(1):80–90.

    PubMed  CAS  Google Scholar 

  156. Zhang C, Xu X, Potter BJ, et al. TNF-alpha contributes to endothelial dysfunction in ischemia/reperfusion injury. Arterioscler Thromb Vasc Biol. 2006;26(3):475–80.

    PubMed  CAS  Google Scholar 

  157. Vakeva A, Morgan BP, Tikkanen I, et al. Time course of complement activation and inhibitor expression after ischemic injury of rat myocardium. Am J Pathol. 1994;144:1357–68.

    PubMed  CAS  Google Scholar 

  158. Meldrum DR. Tumor necrosis factor in the heart. Am J Physiol. 1998;274(3 Pt 2):R577–95.

    PubMed  CAS  Google Scholar 

  159. Di Lisa F, Bernardi P. Mitochondria and ischemia-reperfusion injury of the heart: fixing a hole. Cardiovasc Res. 2006;70(2):191–9.

    PubMed  Google Scholar 

  160. Griffiths EJ, Halestrap AP. Mitochondrial non-specific pores remain closed during cardiac ischaemia, but open upon reperfusion. Biochem J. 1995;307:93–8.

    PubMed  CAS  Google Scholar 

  161. Griffiths EJ, Halestrap AP. Protection by Cyclosporin A of ischemia/reperfusion-induced damage in isolated rat hearts. J Mol Cell Cardiol. 1993;25:1461–9.

    PubMed  CAS  Google Scholar 

  162. Halestrap AP, Kerr PM, Javadov S, et al. Elucidating the molecular mechanism of the permeability transition pore and its role in reperfusion injury of the heart. Biochim Biophys Acta. 1998;1366(1–2):79–94.

    PubMed  CAS  Google Scholar 

  163. Argaud L, Gateau-Roesch O, Muntean D, et al. Specific inhibition of the mitochondrial permeability transition prevents lethal reperfusion injury. J Mol Cell Cardiol. 2005;38(2):367–74.

    PubMed  CAS  Google Scholar 

  164. Ge ZD, Pravdic D, Bienengraeber M, et al. Isoflurane postconditioning protects against reperfusion injury by preventing mitochondrial permeability transition by an endothelial nitric oxide synthase-dependent mechanism. Anesthesiology. 2010;112(1):73–85.

    PubMed  CAS  Google Scholar 

  165. Yao Y, Li L, Gao C, et al. Sevoflurane postconditioning protects chronically-infarcted rat hearts against ischemia-reperfusion injury by activation of pro-survival kinases and inhibition of mitochondrial permeability transition pore opening upon reperfusion. Biol Pharm Bull. 2009;32(11):1854–61.

    PubMed  CAS  Google Scholar 

  166. Hausenloy DJ, Yellon DM, Mani-Babu S, et al. Preconditioning protects by inhibiting the mitochondrial permeability transition. Am J Physiol Heart Circ Physiol. 2004;287(2):H841–9.

    PubMed  CAS  Google Scholar 

  167. Argaud L, Gateau-Roesch O, Raisky O, et al. Post-conditioning inhibits mitochondrial permeability transition. Circulation. 2005;111:194–7.

    PubMed  CAS  Google Scholar 

  168. Argaud L, Gateau-Roesch O, Augeul L, et al. Increased mitochondrial calcium coexists with decreased reperfusion injury in postconditioned (but not preconditioned) hearts. Am J Physiol Heart Circ Physiol. 2008;294(1):H386–91.

    PubMed  CAS  Google Scholar 

  169. Hausenloy DJ, Tsang A, Yellon DM. The reperfusion injury salvage kinase pathway: a common target for both ischemic preconditioning and postconditioning. Trends Cardiovasc Med. 2005;15(2):69–75.

    PubMed  CAS  Google Scholar 

  170. Schulman D, Latchman DS, Yellon DM. Urocortin protects the heart from reperfusion injury via upregulation of p42/p44 MAPK signaling pathway. Am J Physiol Heart Circ Physiol. 2002;283(4):H1481–8.

    PubMed  CAS  Google Scholar 

  171. Zhao ZQ, McGee S, Nakanishi K, et al. Receptor-mediated cardioprotective effects of endogenous adenosine are exerted primarily during reperfusion after coronary occlusion in the rabbit. Circulation. 1993;88(2):709–19.

    PubMed  CAS  Google Scholar 

  172. Gross ER, Gross GJ. Ligand triggers of classical preconditioning and postconditioning. Cardiovasc Res. 2006;70(2):212–21.

    PubMed  CAS  Google Scholar 

  173. Kin H, Zatta AJ, Lofye MT, et al. Postconditioning reduces infarct size via adenosine receptor activation by endogenous adenosine. Cardiovasc Res. 2005;67(1):124–33.

    PubMed  CAS  Google Scholar 

  174. Zatta AJ, Kin H, Yoshishige D, et al. Evidence that cardioprotection by postconditioning involves preservation of myocardial opioid content and selective opioid receptor activation. Am J Physiol Heart Circ Physiol. 2008;294:H1444–51.

    PubMed  CAS  Google Scholar 

  175. Marzilli M, Orsini E, Marraccini P, et al. Beneficial effects of intracoronary adenosine as an adjunct to primary angioplasty in acute myocardial infarction. Circulation. 2000;101(18):2154–9.

    PubMed  CAS  Google Scholar 

  176. Assali AR, Sdringola S, Ghani M, et al. Intracoronary adenosine administered during percutaneous intervention in acute myocardial infarction and reduction in the incidence of “no reflow” phenomenon. Catheter Cardiovasc Interv. 2000;51(1):27–31.

    PubMed  CAS  Google Scholar 

  177. Yellon DM, Baxter GF. Reperfusion injury revisited: is there a role for growth factor signaling in limiting lethal reperfusion injury? Trends Cardiovasc Med. 1999;9(8):245–9.

    PubMed  CAS  Google Scholar 

  178. Hausenloy DJ, Mocanu MM, Yellon DM. Ischemic preconditioning protects by activating pro-survival kinases at reperfusion. Am J Physiol Heart Circ Physiol. 2005;288:H971–6.

    PubMed  CAS  Google Scholar 

  179. Yang XM, Proctor JB, Cui L, et al. Multiple, brief coronary occlusions during early reperfusion protect rabbit hearts by targeting cell signaling pathways. J Am Coll Cardiol. 2004;44(5):1103–10.

    PubMed  Google Scholar 

  180. Ovize M, Baxter GF, Di Lisa F, et al. Postconditioning and protection from reperfusion injury: where do we stand? Position paper from the Working Group of Cellular Biology of the Heart of the European Society of Cardiology. Cardiovasc Res. 2010;87(3):406–23.

    PubMed  CAS  Google Scholar 

  181. Xin P, Zhu W, Li J, et al. Combined local ischemic postconditioning and remote preconditioning recapitulate the cardioprotective effects of local ischemic preconditioning. Am J Physiol Heart Circ Physiol. 2010;298:H1819–31.

    PubMed  CAS  Google Scholar 

  182. Sivaraman V, Mudalagiri NR, Di Salvo C, et al. Postconditioning protects human atrial muscle through the activation of the RISK pathway. Basic Res Cardiol. 2007;102(5):453–9.

    PubMed  Google Scholar 

  183. Davidson SM, Hausenloy D, Duchen MR, et al. Signalling via the reperfusion injury signalling kinase (RISK) pathway links closure of the mitochondrial permeability transition pore to cardioprotection. Int J Biochem Cell Biol. 2006;38(3):414–9.

    PubMed  CAS  Google Scholar 

  184. Abdallah Y, Gkatzoflia A, Gligorievski D, et al. Insulin protects cardiomyocytes against reoxygenation-induced hypercontracture by a survival pathway targeting SR Ca2+ storage. Cardiovasc Res. 2006;70(2):346–53.

    PubMed  CAS  Google Scholar 

  185. Vessey DA, Li L, Honbo N, et al. Sphingosine 1-phosphate is an important endogenous cardioprotectant released by ischemic pre- and postconditioning. Am J Physiol Heart Circ Physiol. 2009;297(4):H1429–35.

    PubMed  CAS  Google Scholar 

  186. Boengler K, Konietzka I, Buechert A, et al. Loss of ischemic preconditioning’s cardioprotection in aged mouse hearts is associated with reduced gap junctional and mitochondrial levels of connexin 43. Am J Physiol Heart Circ Physiol. 2007;292(4):H1764–9.

    PubMed  CAS  Google Scholar 

  187. Willems L, Zatta A, Holmgren K, et al. Age-related changes in ischemic tolerance in male and female mouse hearts. J Mol Cell Cardiol. 2005;38(2):245–56.

    PubMed  CAS  Google Scholar 

  188. O’Brien JD, Ferguson JH, Howlett SE. Effects of ischemia and reperfusion on isolated ventricular myocytes from young adult and aged Fischer 344 rat hearts. Am J Physiol Heart Circ Physiol. 2008;294(5):H2174–83.

    PubMed  Google Scholar 

  189. Mariani J, Ou R, Bailey M, et al. Tolerance to ischemia and hypoxia is reduced in aged human myocardium. J Thorac Cardiovasc Surg. 2000;120(4):660–7.

    PubMed  CAS  Google Scholar 

  190. Harman D. Free radical theory of aging: an update: increasing the functional life span. Ann N Y Acad Sci. 2006;1067:10–21.

    PubMed  CAS  Google Scholar 

  191. Boucher F, Tanguy S, Besse S, et al. Age-dependent changes in myocardial susceptibility to zero flow ischemia and reperfusion in isolated perfused rat hearts: relation to antioxidant status. Mech Ageing Dev. 1998;103(3):301–16.

    PubMed  CAS  Google Scholar 

  192. Amrani M, Goodwin AT, Gray CC, et al. Ageing is associated with reduced basal and stimulated release of nitric oxide by the coronary endothelium. Acta Physiol Scand. 1996;157(1):79–84.

    PubMed  CAS  Google Scholar 

  193. Willems L, Ashton KJ, Headrick JP. Adenosine-mediated cardioprotection in the aging myocardium. Cardiovasc Res. 2005;66(2):245–55.

    PubMed  CAS  Google Scholar 

  194. Houterman S, Verschuren WM, Hofman A, et al. Serum cholesterol is a risk factor for myocardial infarction in elderly men and women: the Rotterdam Study. J Intern Med. 1999;246(1):25–33.

    PubMed  CAS  Google Scholar 

  195. De Luca G, Gibson CM, Bellandi F, et al. Diabetes mellitus is associated with distal embolization, impaired myocardial perfusion, and higher mortality in patients with ST-segment elevation myocardial infarction treated with primary angioplasty and glycoprotein IIb-IIIa inhibitors. Atherosclerosis. 2009;207:181–5.

    PubMed  Google Scholar 

  196. Abbott RD, Donahue RP, Kannel WB, et al. The impact of diabetes on survival following myocardial infarction in men vs women. The Framingham Study. JAMA. 1988;260(23):3456–60.

    PubMed  CAS  Google Scholar 

  197. Girod WG, Jones SP, Sieber N, et al. Effects of hypercholesterolemia on myocardial ischemia-reperfusion injury in LDL receptor-deficient mice. Arterioscler Thromb Vasc Biol. 1999;19(11):2776–81.

    PubMed  CAS  Google Scholar 

  198. Cerwinka WH, Granger DN. Influence of hypercholesterolemia and hypertension on ischemia-reperfusion induced P-selectin expression. Atherosclerosis. 2001;154:337–44.

    PubMed  CAS  Google Scholar 

  199. Cooper A, Heagerty AM. Endothelial dysfunction in human intramyocardial small arteries in atherosclerosis and hypercholesterolemia. Am J Physiol. 1998;275(Heart Circ Physiol 44):H1482–8.

    PubMed  CAS  Google Scholar 

  200. Dandona P, Aljada A. Advances in diabetes for the millennium: diabetes and the endothelium. MedGenMed. 2004;6(3 Suppl):6.

    PubMed  Google Scholar 

  201. Harrison DG. Endothelial dysfunction in atherosclerosis (Review). Basic Res Cardiol. 1994;89 Suppl 1:87–102.

    PubMed  CAS  Google Scholar 

  202. Tsang A, Hausenloy DJ, Mocanu MM, et al. Preconditioning the diabetic heart: the importance of Akt phosphorylation. Diabetes. 2005;54(8):2360–4.

    PubMed  CAS  Google Scholar 

  203. Lefer AM, Tsao PS, Lefer DJ, et al. Role of endothelial dysfunction in the pathogenesis of reperfusion injury after myocardial ischemia. FASEB J. 1991;5(7):2029–34.

    PubMed  CAS  Google Scholar 

  204. Bolli R, Becker L, Gross G, et al. Myocardial protection at a crossroads: the need for translation into clinical therapy. Circ Res. 2004;95:125–34.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakob Vinten-Johansen M.S., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London

About this chapter

Cite this chapter

Vinten-Johansen, J., Zatta, A.J., Jiang, R., Shi, W. (2012). Lethal Myocardial Reperfusion Injury. In: Kaski, J., Hausenloy, D., Gersh, B., Yellon, D. (eds) Management of Myocardial Reperfusion Injury. Springer, London. https://doi.org/10.1007/978-1-84996-019-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-019-9_4

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-018-2

  • Online ISBN: 978-1-84996-019-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics