Skip to main content

Laplacian Matrix

  • Chapter
Graphs and Matrices

Part of the book series: Universitext ((UTX))

Let G be a graph with V(G) = {1;⋯,n} and E(G) = {e 1,⋯,e m }. The Laplacian matrix of G, denoted by L(G), is the n×n matrix defined as follows. The rows and columns of L(G) are indexed by V(G). If ij then the (i, j)-entry of L(G) is 0 if vertex i and j are not adjacent, and it is -1 if i and j are adjacent. The (i, i)-entry of L(G) is d i , the degree of the vertex i, i = 1;2,⋯,n.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Further Reading

  1. W.N. Anderson and T.D. Morley, Eigenvalues of the Laplacian of a graph, Linear and Multilinear Algebra, 18(2):141–145 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  2. R.B. Bapat, Moore-Penrose inverse of the incidence matrix of a tree, Linear and Multilinear Algebra, 42:159–167 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  3. K. ch. Das, An improved upper bound for Laplacian graph eigenvalues, Linear Algebra Appl., 368:269–278 (2003).

    Article  MathSciNet  Google Scholar 

  4. R. Grone and R. Merris, The Laplacian spectrum of a graph, II SIAM J. Discrete Math., 7(2):221–229 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  5. R. Merris, An edge version of the matrix-tree theorem and the Wiener index, Linear and Multilinear Algebra, 25:291–296 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  6. J.W. Moon, On the adjoint of a matrix associated with trees, Linear and Multilinear Algebra, 39:191–194 (1995).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Hindustan Book Agency (India)

About this chapter

Cite this chapter

(2010). Laplacian Matrix. In: Graphs and Matrices. Universitext. Springer, London. https://doi.org/10.1007/978-1-84882-981-7_4

Download citation

Publish with us

Policies and ethics