Skip to main content

Exercise Training in Congenital Heart Diseases

  • Chapter
  • First Online:
Cardiac Rehabilitation Manual

Abstract

Congenital malformations of the heart and vessels occur in 5–9 per 1,000 live births.1,2 The spectrum of congenital malformations of the heart and vessels is diverse. Defects can roughly be categorized into left to right shunt lesions, cyanotic lesions, obstructive lesions, and complex lesions associated with common mixing and single ventricle physiology1 (Fig. 12.1). Table 12.1 shows the most frequent congenital heart diseases comprising approximately 80% of all malformations.1,2

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allen DH, Gutgesell HP, Clark EB, et al. Moss and Adams’ Heart Disease in Infants, Children, and Adolescents. Including the Fetus and Young Adults, 6th ed. Philadelphia: Lippincott Williams & Wilkins.

    Google Scholar 

  2. American Heart Association/American Stroke Association (2008) Heart disease and stroke statistics. 2008 update. American Heart Association/American Stroke Association. http://www.americanheart.org

  3. Look JE, Keane JF, Perry SB, eds. Diagnostic and Interventional Catheterization in Congenital Heart Disease (Developments in Cardiovascular Medicine). 2nd ed. Norwell: Kluwer; 2004.

    Google Scholar 

  4. Bruckenberger E (2008) Herzbericht 2007 mit Transplantationschirurgie. Hannover

    Google Scholar 

  5. Boneva RS, Botto LD, Moore CA, Yang Q, Correa A, Erickson JD. Mortality associated with congenital heart defects in the United States: trends and racial disparities, 1979–1997. Circulation. 2001;103(19):2376-2381.

    Article  PubMed  CAS  Google Scholar 

  6. Sarubbi B, Pacileo G, Pisacane C, et al. Exercise capacity in young patients after total repair of tetralogy of Fallot. Pediatr Cardiol. 2000;21:211-215.

    Article  PubMed  CAS  Google Scholar 

  7. Bjarnason-Wehrens B, Dordel S, Schickendantz S, et al. Motor development in children with congenital cardiac diseases compared to their healthy peers. Cardiol Young. 2007;17:487-498.

    Article  PubMed  Google Scholar 

  8. Bjarnason-Wehrens B, Schmitz S, Dordel S. Motor development in children with congenital cardiac diseases. Eur Cardiol. 2008;4(2):92-96.

    Google Scholar 

  9. Holm I, Fredriksen PM, Fosdahl MA, Olstad M, Vollestad N. Impaired motor competence in school-aged children with complex congenital heart disease. Arch Pediatr Adolesc Med. 2007;161(10):945-950.

    Article  PubMed  Google Scholar 

  10. Dordel S, Bjarnason-Wehrens B, Lawrenz W, et al. Efficiency of psychomotor training of children with (partly-) corrected congenital heart disease. Z Sportm. 1999;50:41-46.

    Google Scholar 

  11. Bjarnason-Wehrens B, Dordel S, Sreeram N, Brockmeier K. Cardiac rehabilitation in congenital heart disease. In: Perk J, Mathes P, Gohlke H, Monpére C, Hellemans I, McGee H, Sellier P, Saner H, eds. Cardiovascular Prevention and Rehabilitation. London: Springer; 2007:361-375.

    Chapter  Google Scholar 

  12. Bjarnason-Wehrens B, Dordel S, Schickendantz S, et al. Motor development in children with congenital cardiac diseases compared to their healthy peers. Cardiol Young. 2007;17:487-498.

    Article  PubMed  Google Scholar 

  13. Unverdorben M, Singer H, Trägler M, et al. Impaired coordination in children with congenital heart disease – only hardly to be explained by medical causes. Herz/Kreisl. 1997;29:181-184.

    Google Scholar 

  14. Stieh J, Kramer HH, Harding P, Fischer G. Gross and fine motor development is impaired in children with cyanotic congenital heart disease. Neuropediatrics. 1999;30:77-82.

    Article  PubMed  CAS  Google Scholar 

  15. Iserin L, Chua TP, Chambers J, Coats AJ, Somerville J. Dyspnoea and exercise intolerance during cardiopulmonary exercise testing in patients with univentricular heart. The effects of chronic hypoxaemia and Fontan procedure. Eur Heart J. 1997;18:1350-1356.

    Article  PubMed  CAS  Google Scholar 

  16. Fredriksen PM, Ingjer F, Nystad W, Thaulow E. A comparison of VO2(peak) between patients with congenital heart disease and healthy subjects, all aged 8–17 years. Eur J Appl Physiol Occup Physiol. 1999;80:409-416.

    Article  PubMed  CAS  Google Scholar 

  17. Sarubbi B, Pacileo G, Pisacane C, et al. Exercise capacity in young patients after total repair of tetralogy of Fallot. Pediatr Cardiol. 2000;21:211-215.

    Article  PubMed  CAS  Google Scholar 

  18. Wessel HU, Paul MH. Exercise studies in tetralogy of Fallot: a review. Pediatr Cardiol. 1999;20:39-47.

    Article  PubMed  CAS  Google Scholar 

  19. Paul MH, Wessel HU. Exercise studies in patients with transposition of the great arteries after atrial repair operations (Mustard/Senning): a review. Pediatr Cardiol. 1999;20:49-55.

    Article  PubMed  CAS  Google Scholar 

  20. Massin MM, Hovels-Gurich HH, Gerard P, Seghaye MC. Physical activity patterns of children after neonatal arterial switch operation. Ann Thorac Surg. 2006;81:665-670.

    Article  PubMed  Google Scholar 

  21. McCrindle BW, Williams RV, Mital S, et al. Physical activity levels in children and adolescents are reduced after the Fontan procedure, independent of exercise capacity, and are associated with lower perceived general health. Arch Dis Child. 2007;92:509-514.

    Article  PubMed  Google Scholar 

  22. Pinto NM, Marino BS, Wernovsky G, et al. Obesity is a common comorbidity in children with congenital and acquired heart disease. Pediatrics. 2007;120(5):e1157-e1164.

    Article  PubMed  Google Scholar 

  23. Stefan MA, Hopman WM, Smythe JF. Effect of activity restriction owing to heart disease on obesity. Arch Pediatr Adolesc Med. 2005;159:477-481.

    Article  PubMed  Google Scholar 

  24. Norgaard MA, Lauridsen P, Helvind M, Pettersson G. Twenty-to-thirty-seven-year follow-up after repair for tetralogy of Fallot. Eur J Cardiothorac Surg. 1999;16:125-130.

    Article  PubMed  CAS  Google Scholar 

  25. Schaffer R, Berdat P, Stolle B, Pfammatter JP, Stocker F, Carrel T. Surgery of the complete atrioventricular canal: relationship between age at operation, mitral regurgitation, size of the ventricular septum defect, additional malformations and early postoperative outcome. Cardiology. 1999;91:231-235.

    Article  PubMed  CAS  Google Scholar 

  26. Hutter PA, Kreb DL, Mantel SF, Hitchcock JF, Meijboom EJ, Bennink GB. Twenty-five years’ experience with the arterial switch operation. J Thorac Cardiovasc Surg. 2002;124:790-797.

    Article  PubMed  CAS  Google Scholar 

  27. Reybrouck T, Mertens L. Physical performance and physical activity in grown-up congenital heart disease. Eur J Cardiovasc Prev Rehabil. 2005;12:498-502.

    Article  PubMed  Google Scholar 

  28. Hirth A. Reybrouck T, Bjarnason-Wehrens B, Lawrenz W, Hoffmann A. Recommendations for participation in competive and leisure sports in patients with congenital heart disease. A consensus document. Eur J Cardiovasc Prev Rehabil. 2006;13:293-299.

    Article  PubMed  Google Scholar 

  29. Mitchell JH, Maron BJ, Epstein SE. 16th Bethesda Conference: cardiovascular abnormalities in the athlete: recommendations regarding eligibility for competition. October 3–5, 1984. J Am Coll Cardiol. 1985;6:1186-1232.

    Article  PubMed  CAS  Google Scholar 

  30. Graham TP Jr, Driscoll DJ, Gersony WM, Newburger JW, Rocchini A, Towbin JA. Task Force 2: congenital heart disease. J Am Coll Cardiol. 2005;45:1326-1333.

    Article  PubMed  Google Scholar 

  31. Picchio FM, Giardini A, Bonvicini M, Gargiulo G. Can a child who has been operated on for congenital heart disease participate in sport and in which kind of sport? J Cardiovasc Med (Hagerstown). 2006;7:234-238.

    Article  Google Scholar 

  32. Bjarnason-Wehrens B, Sticker E, Lawrenz W, Held K. Die Kinderherzgruppe (KHG) – Positionspapier der DGPR. Z Kardiol. 2005;94:860-866.

    Article  Google Scholar 

  33. Bellinger DC, Wypij D, duDuplessis AJ, et al. Neurodevelopmental status at eight years in children with dextro-transposition of the great arteries: the Boston Circulatory Arrest Trial. J Thorac Cardiovasc Surg. 2003;126:1385-1396.

    Article  PubMed  Google Scholar 

  34. Newburger JW, Wypij D, Bellinger DC, et al. Length of stay after infant heart surgery is related to cognitive outcome at age 8 years. J Pediatr. 2003;143:67-73.

    Article  PubMed  Google Scholar 

  35. Wernovsky G, Newburger J. Neurologic and developmental morbidity in children with complex congenital heart disease. J Pediatr. 2003;142:6-8.

    Article  PubMed  Google Scholar 

  36. Majnemer A, Limperopoulos C, Shevell M, Rosenblatt B, Rohlicek C, Tchervenkov C. Long-term neuromotor outcome at school entry of infants with congenital heart defects requiring open-heart surgery. J Pediatr. 2006;148:72-77.

    Article  PubMed  Google Scholar 

  37. Dunbar-Masterson C, Wypij D, Bellinger DC, et al. General health status of children with D-transposition of the great arteries after the arterial switch operation. Circulation. 2001;104(12 Suppl 1):I138-I142.

    PubMed  CAS  Google Scholar 

  38. Carey LK, Nicholson BC, Fox RA. Maternal factors related to parenting young children with congenital heart disease. J Pediatr Nurs. 2002;17:174-183.

    Article  PubMed  Google Scholar 

  39. Kong SG, Tay JS, Yip WC, Chay SO. Emotional and social effects of congenital heart disease in Singapore. Aust Paediatr J. 1986;22:101-106.

    PubMed  CAS  Google Scholar 

  40. Uzark K, Jones K. Parenting stress and children with heart disease. J Pediatr Health Care. 2003;17:163-168.

    PubMed  Google Scholar 

  41. Morelius E, Lundh U, Nelson N. Parental stress in relation to the severity of congenital heart disease in the offspring. Pediatr Nurs. 2002;28:28-32.

    Google Scholar 

  42. DeMaso DR, Campis LK, Wypij D, Bertram S, Lipshitz M, Freed M. The impact of maternal perceptions and medical severity on the adjustment of children with congenital heart disease. J Pediatr Psychol. 1991;16:137-149.

    Article  PubMed  CAS  Google Scholar 

  43. Van Horn M, DeMaso DR, Gonzalez-Heydrich J, Erickson JD. Illness-related concerns of mothers of children with congenital heart disease. J Am Acad Child Adolesc Psychiat. 2001;40:847-854.

    Article  Google Scholar 

  44. Schickendantz S, Sticker EJ, Dordel S, Bjarnason-Wehrens B. Sport and physical activity in children with congenital heart disease. Dtsch Arztebl. 2007;104(9):A563-A569.

    Google Scholar 

  45. Rhodes J, Curran TJ, Camil L, et al. Sustained effects of cardiac rehabilitation in children with serious congenital heart disease. Pediatrics. 2006;118:e586-e593.

    Article  PubMed  Google Scholar 

  46. Rhodes J, Curran TJ, Camil L, et al. Impact of cardiac rehabilitation on the exercise function of children with serious congenital heart disease. Pediatrics. 2005;116:1339-1345.

    Article  PubMed  Google Scholar 

  47. Fredriksen PM, Kahrs N, Blaasvaer S, et al. Effect of physical training in children and adolescents with congenital heart disease. Cardiol Young. 2000;10:107-114.

    PubMed  CAS  Google Scholar 

  48. Moons P, Barrea C, De Wolf D, et al. Changes in perceived health of children with congenital heart disease after attending a special sports camp. Pediatr Cardiol. 2006;27:67-72.

    Article  PubMed  CAS  Google Scholar 

  49. Warnes CA, Williams RG, Bashore TM, et al. ACC/AHA 2008 Guidelines for the Management of Adults with Congenital Heart Disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (writing committee to develop guidelines on the management of adults with congenital heart disease). Circulation. 2008;118(23):e714-e833.

    Article  PubMed  Google Scholar 

  50. Engelfriet P, Boersma E, Oechslin E, et al. The spectrum of adult congenital heart disease in Europe: morbidity and mortality in a 5 year follow-up period. The Euro Heart Survey on adult congenital heart disease. Eur Heart J. 2005;26:2325-2333.

    Article  PubMed  Google Scholar 

  51. Harrison DA, Liu P, Walters JE, et al. Cardiopulmonary function in adult patients late after Fontan repair. J Am Coll Cardiol. 1995;26:1016-1021.

    Article  PubMed  CAS  Google Scholar 

  52. Fredriksen PM, Therrien J, Veldtman G, et al. Lung function and aerobic capacity in adult patients following modified Fontan procedure. Heart. 2001;85:295-299.

    Article  PubMed  CAS  Google Scholar 

  53. Iserin L, Chua TP, Chambers J, Coats AJ, Somerville J. Dyspnoea and exercise intolerance during cardiopulmonary exercise testing in patients with univentricular heart. The effects of chronic hypoxaemia and Fontan procedure. Eur Heart J. 1997;18:1350-1356.

    Article  PubMed  CAS  Google Scholar 

  54. Fredriksen PM, Veldtman G, Hechter S, et al. Aerobic capacity in adults with various congenital heart diseases. Am J Cardiol. 2001;87:310-314.

    Article  PubMed  CAS  Google Scholar 

  55. Paridon SM, Mitchell PD, Colan SD, et al. A cross-sectional study of exercise performance during the first 2 decades of life after the Fontan operation. J Am Coll Cardiol. 2008;52:99-107.

    Article  PubMed  Google Scholar 

  56. Fredriksen PM, Chen A, Veldtman G, Hechter S, Therrien J, Webb G. Exercise capacity in adult patients with congenitally corrected transposition of the great arteries. Heart. 2001;85:191-195.

    Article  PubMed  CAS  Google Scholar 

  57. Fredriksen PM, Therrien J, Veldtman G, et al. Aerobic capacity in adults with tetralogy of Fallot. Cardiol Young. 2002;12:554-559.

    Article  PubMed  Google Scholar 

  58. Diller GP, Dimopoulos K, Okonko D, et al. Exercise intolerance in adult congenital heart disease: comparative severity, correlates, and prognostic implication. Circulation. 2005;112:828-835.

    Article  PubMed  Google Scholar 

  59. Azarbal B, Hayes SW, Lewin HC, Hachamovitch R, Cohen I, Berman DS. The incremental prognostic value of percentage of heart rate reserve achieved over myocardial perfusion single-photon emission computed tomography in the prediction of cardiac death and all-cause mortality: superiority over 85% of maximal age-predicted heart rate. J Am Coll Cardiol. 2004;44:423-430.

    Article  PubMed  Google Scholar 

  60. Norozi K, Wessel A, Alpers V, et al. Chronotropic incompetence in adolescents and adults with congenital heart disease after cardiac surgery. J Card Fail. 2007;13:263-268.

    Article  PubMed  Google Scholar 

  61. Diller GP, Dimopoulos K, Okonko D, et al. Exercise intolerance in adult congenital heart disease: comparative severity, correlates, and prognostic implication. Circulation. 2005;112:828-835.

    Article  PubMed  Google Scholar 

  62. Butera G, Bonnet D, Sidi D, et al. Patients operated for tetralogy of Fallot and with non-sustained ventricular tachycardia have reduced heart rate variability. Herz. 2004;29:304-309.

    Article  PubMed  Google Scholar 

  63. Massin MM, Derkenne B, von Bernuth G. Correlations between indices of heart rate variability in healthy children and children with congenital heart disease. Cardiology. 1999;91:109-113.

    Article  PubMed  CAS  Google Scholar 

  64. McLeod KA, Hillis WS, Houston AB, et al. Reduced heart rate variability following repair of tetralogy of Fallot. Heart. 1999;81:656-660.

    PubMed  CAS  Google Scholar 

  65. Dua JS, Cooper AR, Fox KR, Graham Stuart A. Physical activity levels in adults with congenital heart disease. Eur J Cardiovasc Prev Rehabil. 2007;14:287-293.

    Article  PubMed  Google Scholar 

  66. Swan L, Hillis WS. Exercise prescription in adults with congenital heart disease: a long way to go. Heart. 2000;83:685-687.

    Article  PubMed  CAS  Google Scholar 

  67. Gratz A, Hess J, Hager A. Self-estimated physical functioning poorly predicts actual exercise capacity in adolescents and adults with congenital heart disease. Eur Heart J. 2009;30:497-504.

    Article  PubMed  Google Scholar 

  68. Lunt D, Briffa T, Briffa NK, Ramsay J. Physical activity levels of adolescents with congenital heart disease. Aust J Physiother. 2003;49:43-50.

    PubMed  Google Scholar 

  69. Rees K, Taylor RS, Singh S, Coats AJ, Ebrahim S. Exercise based rehabilitation for heart failure. Cochrane Database Syst Rev. 2004;3:CD003331.

    PubMed  Google Scholar 

  70. Therrien J, Fredriksen P, Walker M, Granton J, Reid GJ, Webb G. A pilot study of exercise training in adult patients with repaired tetralogy of Fallot. Can J Cardiol. 2003;19:685-689.

    PubMed  Google Scholar 

  71. Thaulow E, Fredriksen PM. Exercise and training in adults with congenital heart disease. Int J Cardiol. 2004;97(Suppl 1):35-38.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Birna Bjarnason-Wehrens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London Limited

About this chapter

Cite this chapter

Bjarnason-Wehrens, B., Dordel, S., Schickendantz, S., Sreeram, N., Brockmeier, K. (2010). Exercise Training in Congenital Heart Diseases. In: Niebauer, J. (eds) Cardiac Rehabilitation Manual. Springer, London. https://doi.org/10.1007/978-1-84882-794-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-794-3_12

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-793-6

  • Online ISBN: 978-1-84882-794-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics