Skip to main content

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 48))

  • 3537 Accesses

Abstract

Substantially dependent on signals captured by a sensor or sensor network, the accuracy and precision of a Lamb-wave-based damage identification approach is largely subject to the processing and interpretation of signals. Captured Lamb wave signals carry comprehensive information as to interference existing in the path of wave propagation, such as damage in the medium. All the transducers described in Chapters 3 and 4 would be able to capture Lamb wave signals, although their efficiency and precision varies. Theoretically, some changes, more or less, always occur in the captured signals when damage exists. The key is to correctly tease out these changes and then associate them with particular variations in damage parameters (e.g., presence, location, size and severity). It sounds straightforward, but many challenging problems complicate this process, because of the existence of multiple wave modes, dispersion, mode conversion, superposition of scattered waves from structural boundaries or irregularities (e.g., joints, stiffeners and openings), broadband noise and other features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Raghavan, A., Cesnik, C.E.S.: Review of guided-wave structural health monitoring. The Shock and Vibration Digest 39(2), 91–114 (2007)

    Google Scholar 

  2. Staszewski, W.J., Worden, K.: Signal processing for damage detection. In: Staszewski, W.J., Boller, C., Tomlinson, G.R. (eds.) Health Monitoring of Aerospace Structures: Smart Sensor Technologies and Signal Processing, ch. 5, pp. 163–206. John Wiley & Sons, Inc., Chichester (2004)

    Google Scholar 

  3. Boashash, B.: Time-Frequency Signal Analysis, Methods and Applications. Longman Cheshire Press, Melbourne (1992)

    Google Scholar 

  4. Coverley, P.T., Staszewski, W.: Impact damage location in composite structures using optimized sensor triangulation procedure. Smart Materials and Structures 12, 795–803 (2003)

    Google Scholar 

  5. Michaels, J.E.: Detection, localization and characterization of damage in plates with an in situ array of spatially distributed ultrasonic sensors. Smart Materials and Structures (in press)

    Google Scholar 

  6. Michaels, J.E., Michaels, T.E.: Guided wave signal processing and image fusion for in situ damage localization in plates. Wave Motion 44, 482–492 (2007)

    Google Scholar 

  7. Tua, P.S., Quek, S.T., Wang, Q.: Detection of cracks in cylindrical pipes and plates using piezo-actuated Lamb waves. Smart Materials and Structures 14, 1325–1342 (2005)

    Google Scholar 

  8. Chen, H.G., Yan, Y.J., Chen, W.H., Jiang, J.S., Yu, L., Wu, Z.Y.: Early damage detection in composite wingbox structures using Hilbert-Huang transform and genetic algorithm. Structural Health Monitoring: An International Journal 6(4), 281–297 (2007)

    Google Scholar 

  9. Konstantinidis, G., Drinkwater, B.W., Wilcox, P.D.: The temperature stability of guided wave structural health monitoring systems. Smart Materials and Structures 15, 967–976 (2006)

    Google Scholar 

  10. Staszewski, W.J., Biemans, C., Boller, C., Tomlinson, G.R.: Crack propagation monitoring in metallic structures using piezoceramic sensors. In: Selvarajan, A., Upadhya, A.R., Mangalgiri, P.D. (eds.) Proceedings of the International Conference on Smart Materials, Structures and Systems, Bangalore, India, July 7-10, 1999, pp. 532–541 (1999)

    Google Scholar 

  11. Betz, D.C., Staszewski, W.J., Thursby, G., Culshaw, B.: Structural damage identification using multifunctional Bragg grating sensors: II. damage detection results and analysis. Smart Materials and Structures 15, 1313–1322 (2006)

    Google Scholar 

  12. Su, Z., Wang, X., Chen, Z., Ye, L., Wang, D.: A built-in active sensor network for health monitoring of composite structures. Smart Materials and Structures 15, 1939–1949 (2006)

    Google Scholar 

  13. Zhao, X., Gao, H., Zhang, G., Ayhan, B., Yan, F., Kwan, C., Rose, J.L.: Active health monitoring of an aircraft wing with embedded piezoelectric sensor/actuator network: I. defect detection, localization and growth monitoring. Smart Materials and Structures 16, 1208–1217 (2007)

    Google Scholar 

  14. Hurlebaus, S., Niethammer, M., Jacobs, L.J., Valle, C.: Automated methodology to locate notches with Lamb waves. Acoustics Research Letters Online 2(4), 97–102 (2001)

    Google Scholar 

  15. Posenato, D., Lanata, F., Inaudi, D., Smith, I.F.C.: Model-free data interpretation for continuous monitoring of complex structures. Advanced Engineering Informatics 22, 135–144 (2008)

    Google Scholar 

  16. Ing, R.K., Fink, M.: Time-reversed Lamb waves. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 45(4), 1032–1043 (1998)

    Google Scholar 

  17. Montalvão, D., Maia, N.M.M., Ribeiro, A.M.R.: A review of vibration-based structural health monitoring with special emphasis on composite materials. The Shock and Vibration Digest 38(4), 295–324 (2006)

    Google Scholar 

  18. Wang, C.H., Rose, J.T., Chang, F.-K.: A synthetic time-reversal imaging method for structural health monitoring. Smart Materials and Structures 13, 415–423 (2004)

    Google Scholar 

  19. Giurgiutiu, V., Cuc, A.: Embedded non-destructive evaluation for structural health monitoring, damage detection, and failure prevention. The Shock and Vibration Digest 37(2), 83–105 (2005)

    Google Scholar 

  20. Santoni, G.B., Yu, L., Xu, B., Giurgiutiu, V.: Lamb wave-mode tuning of piezoelectric wafer active sensors for structural health monitoring. Journal of Vibration and Acoustics 129, 752–762 (2007)

    Google Scholar 

  21. Park, H.W., Sohn, H., Law, K.H., Farrar, C.R.: Time reversal active sensing for health monitoring of a composite plate. Journal of Sound and Vibration 302, 50–66 (2007)

    Google Scholar 

  22. Alleyne, D.N., Pialucha, T.P., Cawley, P.: A signal regeneration technique for long-range propagation of dispersive Lamb waves. Ultrasonics 31, 201–204 (1993)

    Google Scholar 

  23. Sohn, H., Wait, J.R., Park, G., Farrar, C.R.: Multi-scale structural health monitoring for composite structures. In: Boller, C., Staszewski, W.J. (eds.) Proceedings of the 2nd European Workshop on Structural Health Monitoring, Munich, Germany, July 7-9, 2004, pp. 721–729. DEStech Publications, Inc (2004)

    Google Scholar 

  24. Prada, C., Kerbrat, E., Cassereau, D., Fink, M.: Time reversal techniques in ultrasonic nondestructive testing of scattering media. Inverse Problems 18, 1761–1773 (2002)

    MATH  MathSciNet  Google Scholar 

  25. Sohn, H., Park, H.W., Law, K.H., Farrar, C.R.: Combination of a time reversal process and a consecutive outlier analysis for baseline-free damage diagnosis. Journal of Intelligent Material Systems and Structures 18, 335–346 (2007)

    Google Scholar 

  26. Xu, B., Giurgiutiu, V.: Single mode tuning effects on Lamb wave time reversal with piezoelectric wafer active sensors for structural health monitoring. Journal of Nondestructive Evaluation 26, 123–134 (2007)

    Google Scholar 

  27. The MathWorks, Inc, Signal Processing Toolbox (User’s Guide), Version: 6.0 (2002)

    Google Scholar 

  28. Alleyne, D., Cawley, P.: A 2-dimensional Fourier transform method for the quantitative measurement of Lamb modes. In: Thompson, D.O., Chimenti, D.E. (eds.) Proceedings of the Review of Progress in Quantitative Nondestructive Evaluation, vol. 10, pp. 201–208. Plenum Press, New York (1991)

    Google Scholar 

  29. Gao, W., Glorieux, C., Thoen, J.: Laser ultrasonic study of Lamb waves: determination of the thickness and velocities of a thin plate. International Journal of Engineering Science 41, 219–228 (2003)

    Google Scholar 

  30. Koh, Y.L., Chiu, W.K., Rajic, N.: Integrity assessment of composite repair patch using propagating Lamb waves. Composite Structures 58, 363–371 (2002)

    Google Scholar 

  31. Koh, Y.L., Chiu, W.K., Rajic, N.: Effects of local stiffness changes and delamination on Lamb wave transmission using surface-mounted piezoelectric transducers. Composite Structures 57, 437–443 (2002)

    Google Scholar 

  32. Heller, K., Jacobs, L.J., Qu, J.: Characterization of adhesive bond properties using Lamb waves. NDT&E International 33, 555–563 (2000)

    Google Scholar 

  33. EI youbi, F., Grondel, S., Assaad, J.: Signal processing for damage detection using two different array transducers. Ultrasonics 42, 803–806 (2004)

    Google Scholar 

  34. Rguiti, M., Grondel, S., EI youbi, F., Courtois, C., Lippert, M., Leriche, A.: Optimized piezoelectric sensor for a specific application: detection of Lamb waves. Sensors and Actuators A126, 362–368 (2006)

    Google Scholar 

  35. Wong, C.K.W., Chiu, W.K., Rajic, N., Galea, S.C.: Can stress waves be used for monitoring sub-surface defects in repaired structures? Composite Structures 76, 199–208 (2006)

    Google Scholar 

  36. Ihn, J.-B., Chang, F.-K.: Detection and monitoring of hidden fatigue crack growth using a built-in piezoelectric sensor/actuator network: I. diagnostics. Smart Materials and Structures 13, 609–620 (2004)

    Google Scholar 

  37. Ihn, J.-B., Chang, F.-K.: Detection and monitoring of hidden fatigue crack growth using a built-in piezoelectric sensor/actuator network: II. validation using riveted joints and repair patches. Smart Materials and Structures 13, 621–630 (2004)

    Google Scholar 

  38. Kim, Y.Y., Kim, E.H.: Effectiveness of the continuous wavelet transform in the analysis of some dispersive elastic waves. Journal of the Acoustical Society of America 110(1), 1–9 (2001)

    Google Scholar 

  39. Sung, D.U., Oh, J.H., Kim, C.-G., Hong, C.-S.: Impact monitoring techniques for smart composite laminates. In: Hong, C.S., Kim, C.G. (eds.) Proceedings of the 2nd Asian-Australasian Conference on Composite Materials (ACCM-2), Korea, August 18-20, 2000, pp. 1123–1128 (2000)

    Google Scholar 

  40. Chang, F.-K., Markmiller, F.C., Ihn, J.-B., Cheng, K.Y.: A potential link from damage diagnostics to health prognostics of composites through built-in sensors. Journal of Vibration and Acoustics 129, 718–729 (2007)

    Google Scholar 

  41. Prosser, W.H., Seale, M.D., Smith, B.T.: Time-frequency analysis of the dispersion of Lamb modes. Journal of the Acoustical Society of America 105(5), 2669–2676 (1999)

    Google Scholar 

  42. Niethammer, M., Jacobs, L.J., Qu, J., Jarzynski, J.: Time-frequency representations of Lamb waves. Journal of the Acoustical Society of America 109(5), 1841–1847 (2001)

    Google Scholar 

  43. Wang, W.J., McFadden, P.D.: Early detection of gear failure by vibration analysis, part I: calculation of he time-frequency distribution. Mechanical Systems and Signal Processing 7, 193–203 (1993)

    Google Scholar 

  44. Ge, M., Zhang, G., Du, R., Xu, Y.: Feature extraction from energy distribution of stamping processes using wavelet transform. Journal of Vibration and Control 8, 1023–1032 (2002)

    Google Scholar 

  45. The MathWorks, Inc, Wavelet Toolbox (User’s Guide), Version: 1.0 (1996)

    Google Scholar 

  46. Lee, S.U., Robb, D., Besant, C.: The directional Choi-Williams distribution for the analysis of rotor-vibration signals. Mechanical Systems and Signal Processing 15(4), 789–811 (2001)

    Google Scholar 

  47. Hong, J.-C., Sun, K.H., Kim, Y.Y.: The matching pursuit approach based on the modulated Gaussian pulse for efficient guided wave inspection. Smart Materials and Structures 14(4), 548–560 (2005)

    Google Scholar 

  48. Raghavan, A., Cesnik, C.E.S.: Guided-wave signal processing using chirplet matching pursuits and mode correlation for structural health monitoring. In: Proceedings of the SPIE, vol. 6174 (2006)

    Google Scholar 

  49. Mallat, S., Zhang, Z.: Matching pursuits with time-frequency dictionaries. IEEE Transactions on Signal Processing 41(12), 3397–3415 (1993)

    MATH  Google Scholar 

  50. Zhang, G., Zhang, S., Wang, Y.: Application of adaptive time-frequency decomposition in ultrasonic NDE of highly scattering materials. Ultrasonics 38(10), 961–964 (2000)

    Google Scholar 

  51. Raghavan, A., Cesnik, C.E.S.: Guided-wave signal processing using chirplet matching pursuits and mode correlation for structural health monitoring. Smart Materials and Structures 16(2), 355–366 (2007)

    Google Scholar 

  52. Li, F., Su, Z., Ye, L., Meng, G.: A correlation filtering-based matching pursuit (CF-MP) for damage identification using Lamb waves. Smart Materials and Structures 15, 1585–1594 (2006)

    Google Scholar 

  53. Das, S., Kyriakides, I., Chattopadhyay, A., Papandreou-Suppappola, A.: Monte Carlo matching pursuit decomposition method for damage quantification in composite structures. Journal of Intelligent Material Systems and Structures 20, 647–658 (2009)

    Google Scholar 

  54. Martinez, L., Morvan, B., Izbicki, J.L.: Space-time-wavenumber-frequency Z(x,t,k,f) analysis of SAW generation on fluid filled cylindrical shells. Ultrasonics 42(1-9), 383–389 (2004)

    Google Scholar 

  55. Wang, X., Tansel, I.N.: Modeling the propagation of Lamb waves using a genetic algorithm and S-transformation. Structural Health Monitoring: An International Journal 6(1), 25–37 (2007)

    Google Scholar 

  56. Daubechies, I.: The wavelet transform, time-frequency localization and signal analysis. IEEE Transactions on Information Theory 36(5), 961–1005 (1990)

    MATH  MathSciNet  Google Scholar 

  57. Newland, D.E.: Wavelet analysis of vibration, part I: theory. Journal of Vibration and Acoustics 116, 409–416 (1994)

    Google Scholar 

  58. Newland, D.E.: Wavelet analysis of vibration, part II: wavelet maps. Journal of Vibration and Acoustics 116, 417–425 (1994)

    Google Scholar 

  59. Paget, C.A., Grondel, S., Levin, K., Delebarre, C.: Damage assessment in composites by Lamb waves and wavelet coefficients. Smart Materials and Structures 12, 393–402 (2003)

    Google Scholar 

  60. Hou, Z., Noori, M.: Application of wavelet analysis for structural health monitoring. In: Chang, F.-K. (ed.) Proceedings of the 2nd International Workshop on Structural Health Monitoring, Stanford, CA, USA, September 8-10, 1999, pp. 946–955. Technomic Publishing Co (1999)

    Google Scholar 

  61. Legendre, S., Massicotte, D., Goyette, J., Bose, T.K.: Wavelet-transform-based method of analysis for Lamb-wave ultrasonic NDE signals. IEEE Transactions on Instrumentation and Measurement 49, 524–530 (2000)

    Google Scholar 

  62. Lemistre, M., Gouyon, R., Kaczmarek, H., Balageas, D.: Damage localization in composite plates using wavelet transform processing on Lamb wave signals. In: Chang, F.-K. (ed.) Proceedings of the 2nd International Workshop on Structural Health Monitoring, Stanford, CA, USA, September 8-10, 1999, pp. 861–870. Technomic Publishing Co (1999)

    Google Scholar 

  63. Abbate, A., Koay, J., Frankel, J., Schroeder, S.C., Das, P.: Signal detection and noise suppression using a wavelet transform signal processor: application to ultrasonic flaw detection. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 44, 14–26 (1997)

    Google Scholar 

  64. Hou, Z., Noori, M., St. Amand, R.: Wavelet-based approach for structural damage detection. Journal of Engineering Mechanics 7, 677–683 (2000)

    Google Scholar 

  65. Staszewski, W.J., Pierce, S.G., Worden, K., Culshaw, B.: Cross-wavelet analysis for Lamb wave damage detection in composite materials using optical fibres. Key Engineering Materials 167-168, 374–380 (1999)

    Google Scholar 

  66. Moyo, P., Brownjohn, J.M.W.: Detection of anomalous structural behaviour using wavelet analysis. Mechanical Systems and Signal Processing 16, 429–445 (2002)

    Google Scholar 

  67. Hayashia, Y., Ogawab, S., Chob, H., Takemotob, M.: Non-contact estimation of thickness and elastic properties of metallic foils by the wavelet transform of laser-generated Lamb waves. NDT&E International 32(1), 21–27 (1999)

    Google Scholar 

  68. Okafor, A.C., Dutta, A.: Structural damage detection in beams by wavelet transforms. Smart Materials and Structures 9, 906–917 (2000)

    Google Scholar 

  69. Wu, Y., Wong, K.-W., Zhuang, T.G.: Limited samples wavelet network and its application for damage detection composites. Optical Engineering 39(4), 1002–1008 (2000)

    Google Scholar 

  70. Yan, Y.J., Yam, L.H.: Online detection of crack damage in composite plates using embedded piezoelectric actuators/sensors and wavelet analysis. Composite Structures 58, 29–38 (2002)

    Google Scholar 

  71. Sung, C.K., Tai, H.M., Chen, C.W.: Locating defects of a gear system by the technique of wavelet transform. Mechanism and Machine Theory 35, 1169–1182 (2000)

    MATH  Google Scholar 

  72. Patterson, D.M., DeFacio, B., Neal, S.P., Thompson, C.R.: Wavelets and their application to digital signal processing in ultrasonic NDE. In: Thompson, D.O., Chimenti, D.E. (eds.) Review of Progress in Quantitative Nondestructive Evaluation, vol. 12B, pp. 719–726. Plenum Press, New York (1993)

    Google Scholar 

  73. Staszewski, W.J.: Structural and mechanical damage detection using wavelets. The Shock and Vibration Digest 30(6), 457–472 (1998)

    Google Scholar 

  74. Peng, Z.K., Chu, F.L.: Application of the wavelet transform in machine condition monitoring and fault diagnostics: a review with bibliography. Mechanical Systems and Signal Processing (in press)

    Google Scholar 

  75. Silva, M.Z., Gouyon, R., Lepoutre, F.: Hidden corrosion detection in aircraft aluminum structures using laser ultrasonics and wavelet transform signal analysis. Ultrasonics 41, 301–305 (2003)

    Google Scholar 

  76. Chan, Y.T.: Wavelet Basic. Kluwer Academic Publishers, Boston (1995)

    Google Scholar 

  77. Chui, C.K.: Wavelets: a Mathematical Tool for Signal Processing. Society for Industrial and Applied Mathematics, Philadelphia (1997)

    Google Scholar 

  78. Staszewski, W.J., Pierce, S.G., Worden, K., Philp, W.R., Tomlinson, G.R., Culshaw, B.: Wavelet signal processing for enhanced Lamb wave defect detection in composite plates using optical fiber detection. Optical Engineering 36(7), 1877–1888 (1997)

    Google Scholar 

  79. Yang, W.-X., Hull, J.B., Seymour, M.D.: A contribution to the applicability of complex wavelet analysis of ultrasonic signals. NDT&E International 37, 497–504 (2004)

    Google Scholar 

  80. Picinbono, B.: Principles of Signals and Systems: Deterministic Signals. Artech House, Boston (1988)

    MATH  Google Scholar 

  81. Su, Z., Ye, L., Bu, X.: A damage identification technique for CF/EP composite laminates using distributed piezoelectric transducers. Composite Structures 57, 465–471 (2002)

    Google Scholar 

  82. Hou, J., Leonard, K.R., Hinders, M.K.: Automatic multi-mode Lamb wave arrival time extraction for improved tomographic reconstruction. Inverse Problems 20, 1873–1888 (2004)

    MATH  MathSciNet  Google Scholar 

  83. Georgiou, G., Cohen, F.S.: Tissue characterization using the continuous wavelet transform, part I: decomposition method. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 48(2), 355–363 (2001)

    Google Scholar 

  84. Su, Z., Wang, X., Chen, Z., Ye, L.: A hierarchical data fusion scheme for identifying multi-damage in composite structures with a built-in sensor network. Smart Materials and Structures 16, 2067–2079 (2007)

    Google Scholar 

  85. Diamanti, K., Soutis, C., Hodgkinson, J.M.: Piezoelectric transducer arrangement for the inspection of large composite structures. Composites: Part A 38, 1121–1130 (2007)

    Google Scholar 

  86. Pine, D.J.: Detection of utility pole rot damage by measuring the reflection coefficient. Journal of Nondestructive Evaluation 16(1), 43–56 (1997)

    Google Scholar 

  87. Gilchrist, M.D.: Attenuation of ultrasonic Rayleigh-Lamb waves by small horizontal defects in thin aluminium plates. International Journal of Mechanical Sciences 41, 581–594 (1999)

    MATH  Google Scholar 

  88. Culshaw, B., Pierce, S.G., Staszewski, W.J.: Condition monitoring in composite materials: an integrated systems approach. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering 212, 189–202 (1998)

    Google Scholar 

  89. Karunasena, W.M., Liew, K.M., Kitipornchai, S.: Hybrid analysis of Lamb wave reflection by a crack at the fixed edge of a composite plate. Computer Methods in Applied Mechanics and Engineering 125, 221–233 (1995)

    Google Scholar 

  90. Crane, L.J., Gilchrist, M.D., Miller, J.J.H.: Analysis of Rayleigh-Lamb wave scattering by a crack in an elastic plate. Computational Mechanics 19, 533–537 (1997)

    MATH  Google Scholar 

  91. Maslov, K., Kundu, T.: Selection of Lamb modes for detecting internal defects in composite laminates. Ultrasonics 35, 141–150 (1997)

    Google Scholar 

  92. Chimenti, D.E., Yang, C.-H.: Guided wave mode crossing/grouping studied in an image representation of the reflection coefficient. In: Thompson, D.O., Chimenti, D.E. (eds.) Review of Progress in Quantitative Nondestructive Evaluation, vol. 13, pp. 117–124. Plenum Press, New York (1994)

    Google Scholar 

  93. Diamanti, K., Hodgkinson, J.M., Soutis, C.: Detection of low-velocity impact damage in composite plates using Lamb waves. Structural Health Monitoring: An International Journal 3(1), 33–41 (2004)

    Google Scholar 

  94. Su, Z., Ye, L., Bu, X., Wang, X., Mai, Y.-W.: Quantitative assessment of damage in a structural beam based on wave propagation by impact excitation. Structural Health Monitoring: An international Journal 2(1), 27–40 (2003)

    Google Scholar 

  95. Seemann, W.: Transmission and reflection coefficients for longitudinal waves obtained by a combination of refined rod theory and FEM. Journal of Sound and Vibration 197(5), 571–587 (1996)

    Google Scholar 

  96. Diligent, O., Lowe, M.J.S.: Reflection of the S0 Lamb mode from a flat bottom circular hole. Journal of the Acoustical Society of America 118(5), 2869–2879 (2005)

    Google Scholar 

  97. Benmeddour, F., Grondel, S., Assaad, J., Moulin, E.: Study of the fundamental Lamb modes interaction with symmetrical notches. NDT&E International (in press)

    Google Scholar 

  98. Kim, Y.Y., Kim, E.H.: A new damage detection method based on a wavelet transform. In: Proceedings of the 18th International Modal Analysis Conference (IMAC), San Antonio, TX, USA, February 7-10, 2000, pp. 1207–1212 (2000)

    Google Scholar 

  99. Adams, D.E.: Health Monitoring of Structural Materials and Components: Methods with Applications. John Wiley & Sons, Inc, Hoboken (2007)

    Google Scholar 

  100. Sohn, H.: Statistical pattern recognition paradigm applied to defect detection in composite plates. In: Inman, D.J., Farrar, C.R., Lopes Jr., V., Steffen Jr., V. (eds.) Damage Prognosis: for Aerospace, Civil and Mechanical Systems, ch. 14, pp. 293–303. John Wiley & Sons, Inc., Chichester (2005)

    Google Scholar 

  101. Diaz Valdes, S.H., Soutis, C.: A structural health monitoring system for laminated composites. In: Chang, F.-K. (ed.) Proceedings of the 3rd International Workshop on Structural Health Monitoring, Stanford, CA, USA, September 12-14, 2001, pp. 1476–1485. CRC Press, Boca Raton (2001)

    Google Scholar 

  102. Quek, S.T., Tua, P.S., Jin, J.: Comparison of plain piezoceramics and inter-digital transducer for crack detection in plates. Journal of Intelligent Material Systems and Structures 18, 949–961 (2007)

    Google Scholar 

  103. Fromme, P.: Monitoring of plate structures using guided ultrasonic waves. In: Thompson, D.O., Chimenti, D.E. (eds.) Review of Progress in Quantitative Nondestructive Evaluation, vol. 27, pp. 78–85. American Institute of Physics, New York (2008)

    Google Scholar 

  104. Dupont, M., Osmont, D., Gouyon, R., Balageas, D.L.: Permanent monitoring of damaging impacts by a piezoelectric sensor based integrated system. In: Chang, F.-K. (ed.) Proceedings of the 2nd International Workshop on Structural Health Monitoring, Stanford, CA, USA, September 8-10, 1999, pp. 561–570. Technomic Publishing Co (1999)

    Google Scholar 

  105. Wolfinger, C., Arendts, F.J., Friedrich, K.: Health-monitoring based on piezoelectric transducers. Aerospace Science and Technology 6, 391–400 (1996)

    Google Scholar 

  106. di Scalea, F.L., Matt, H., Bartoli, I., Coccia, S., Park, G., Farrar, C.: Health monitoring of UAV wing skin-to-spar joints using guided waves and macro fiber composite transducers. Journal of Intelligent Material Systems and Structures 18, 373–388 (2007)

    Google Scholar 

  107. Rizzo, P., di Scalea, F.L.: Feature extraction for defect detection in strands by guided ultrasonic waves. Structural Health Monitoring: An International Journal 5(3), 297–308 (2006)

    Google Scholar 

  108. Michaels, J.E., Michaels, T.E.: An integrated strategy for detection and imaging of damage using a spatially distributed array of piezoelectric sensors. In: Proceedings of the SPIE (Conference on Health Monitoring of Structural and Biological Systems), vol. 6532 (2007), Paper No.: 653203

    Google Scholar 

  109. Michaels, J.E., Michaels, T.E.: Enhanced differential methods for guided wave phased array imaging using spatially distributed piezoelectric transducers. In: Thompson, D.O., Chimenti, D.E. (eds.) Review of Progress in Quantitative Nondestructive Evaluation, vol. 25B, pp. 837–844. American Institute of Physics, New York (2006)

    Google Scholar 

  110. Leonard, K.R., Hinders, M.K.: Lamb wave tomography of pipe-like structures. Ultrasonics 43, 574–583 (2005)

    Google Scholar 

  111. Qing, X.P., Chan, H.-L., Beard, S.J., Kumar, A.: An active diagnostic system for structural health monitoring of rocket engines. Journal of Intelligent Material Systems and Structures 17, 619–628 (2006)

    Google Scholar 

  112. Wu, Z., Qing, X.P., Ghosh, K., Karbhar, V., Chang, F.-K.: Health monitoring of bonded composite repair in bridge rehabilitation. Smart Materials and Structures (in press)

    Google Scholar 

  113. Trendafilova, I., Manoach, E.: Vibration based damage detection in plates by using time series analysis. Mechanical Systems and Signal Processing (in press)

    Google Scholar 

  114. Yuan, S., Liang, D., Shi, L., Zhao, X., Wu, J., Li, G., Qiu, L.: Recent progress on distributed structural health monitoring research at NUAA. Journal of Intelligent Material Systems and Structures 19, 373–386 (2008)

    Google Scholar 

  115. Park, S., Yun, C.-B., Roh, Y., Lee, J.-J.: PZT-based active damage detection techniques for steel bridge components. Smart Materials and Structures 15, 957–966 (2006)

    Google Scholar 

  116. Keilers Jr., C., Chang, F.-K.: Identifying delamination in composite beams using built-in piezoelectrics: part I - experiments and analysis. Journal of Intelligent Material Systems and Structures 6(5), 649–663 (1995)

    Google Scholar 

  117. Choi, K., Keilers Jr., C., Chang, F.-K.: Impact Damage detection in composite structures using distributed piezoceramics. In: Proceedings of the 35th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, April 18-20, 1994, pp. 118–124 (1994)

    Google Scholar 

  118. Tracy, M., Chang, F.-K.: Identifying impacts in composite plates with piezoelectric strain sensors, part I: theory. Journal of Intelligent Material Systems and Structures 9, 920–928 (1998)

    Google Scholar 

  119. Halabe, U.B., Franklin, R.: Ultrasonic signal amplitude measurement and analysis techniques for nondestructive evaluation of structural members. In: Proceedings of the SPIE, vol. 3396, pp. 84–94 (1998)

    Google Scholar 

  120. Monnier, T.: Lamb waves-based impact damage monitoring of a stiffened aircraft panel using piezoelectric transducers. Journal of Intelligent Material Systems and Structures 17, 411–421 (2006)

    Google Scholar 

  121. Staszewski, W.J., Boller, C., Tomlinson, G.R.: Health Monitoring of Aerospace Structures: Smart Sensor Technologies and Signal Processing. John Wiley & Sons, Inc, Chichester (2004)

    Google Scholar 

  122. Sohn, H., Farrar, C.R., Hunter, N.F., Worden, K.: Structural health monitoring using statistical pattern recognition techniques. ASME Journal of Dynamic Systems, Measurement and Control 123, 706–711 (2001)

    Google Scholar 

  123. Banerjee, S., Ricci, F., Monaco, E., Mal, A.: A wave propagation and vibration-based approach for damage identification in structural components. Journal of Sound and Vibration 322(1-2), 167–183 (2009)

    Google Scholar 

  124. Banerjee, S., Ricci, F., Monaco, E., Lecce, L., Mal, A.: Autonomous impact damage monitoring in a stiffened composite panel. Journal of Intelligent Material Systems and Structures 18, 623–633 (2007)

    Google Scholar 

  125. Ihn, J.-B., Chang, F.-K.: Pitch-catch active sensing methods in structural health monitoring for aircraft structures. Structural Health Monitoring: An International Journal 7(1), 5–19 (2008)

    Google Scholar 

  126. Sohn, H., Park, G., Wait, J.R., Limback, N.P.: Wavelet based analysis for detecting delamination in composite plates. In: Chang, F.-K. (ed.) Proceedings of the 4th International Workshop on Structural Health Monitoring, Stanford, CA, USA, September 15-17, 2003, pp. 567–574. DEStech Publications, Inc (2003)

    Google Scholar 

  127. Park, S., Yun, C.-B., Roh, Y.: Damage diagnostics on a welded zone of a steel truss member using an active sensing network system. NDT&E International 40, 71–76 (2007)

    Google Scholar 

  128. Staszewski, W.J.: Wavelet based compression and feature selection for vibration analysis. Journal of Sound and Vibration 211(5), 624–659 (1998)

    Google Scholar 

  129. Levin, R.I., Lieven, N.A.J.: Dynamic finite element model updating using neural networks. Journal of Sound and Vibration 210, 593–607 (1998)

    Google Scholar 

  130. Lu, Y., Wang, X., Tang, J., Ding, Y.: Damage detection using piezoelectric transducers and the Lamb wave approach: II. robust and quantitative decision making. Smart Materials and Structures (in press)

    Google Scholar 

  131. Jolliffe, I.T.: Principal Component Analysis. Springer, New York (2002)

    MATH  Google Scholar 

  132. Su, Z., Ye, L.: Digital damage fingerprints (DDF) and its application in quantitative damage identification. Composite Structures 67, 197–204 (2005)

    Google Scholar 

  133. Su, Z., Ye, L.: An intelligent signal processing and pattern recognition technique for defect identification using an active sensor network. Smart Materials and Structures 13(4), 957–969 (2004)

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Su, Z., Ye, L. (2009). Processing of Lamb Wave Signals. In: Identification of Damage Using Lamb Waves. Lecture Notes in Applied and Computational Mechanics, vol 48. Springer, London. https://doi.org/10.1007/978-1-84882-784-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-784-4_5

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-783-7

  • Online ISBN: 978-1-84882-784-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics