Skip to main content

Body Composition

  • Chapter
  • First Online:
Medical Imaging in Clinical Trials
  • 2220 Accesses

Abstract

Human body composition is generally defined as the proportion of fat (adipose), muscle (parenchymal tissues), and bone (mineral) of the body. Body composition can be an indicator of disease or health. Besides fat, muscle, and bone, body composition can be described with varying levels of complexity. This chapter describes the models used to measure body composition and, because of their importance to clinical trials, goes into detail on the use of three imaging methods: dual-energy X-ray absorptiometry, quantitative computed tomography, and MRI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang ZM, Pierson Jr RN, Heymsfield SB. The five-level model: a new approach to organizing body-composition research. Am J Clin Nutr. 1992;56(1):19–28.

    CAS  PubMed  Google Scholar 

  2. Flegal KM, Ogden CL, Yanovski JA, Freedman DS, Shepherd JA, Graubard BI, Borrud LG. High adiposity and high body mass index-for-age in US children and adolescents overall and by race-ethnic group. Am J Clin Nutr. 2010;91(4):1020–6.

    Article  CAS  PubMed  Google Scholar 

  3. Siri WE. Body composition from fluid spaces and density: analysis of methods. In: Brozek J, Henzchel A, editors. Techniques for measuring body composition. Washington, DC: National Academy of Sciences; 1961. p. 224–44.

    Google Scholar 

  4. Brozek J, Grande F, Anderson JT, Keys A. Densitometric analysis of body composition: revision of some quantitative assumptions. Ann N Y Acad Sci. 1963;110:113–40.

    Article  CAS  PubMed  Google Scholar 

  5. Van Der Ploeg GE, Withers RT, Laforgia J. Percent body fat via DEXA: comparison with a four-compartment model. J Appl Physiol. 2003;94(2):499–506.

    Google Scholar 

  6. Thomas LW. The chemical composition of adipose tissue of man and mice. Q J Exp Physiol Cogn Med Sci. 1962;47:179–88.

    CAS  PubMed  Google Scholar 

  7. Abate N, Burns D, Peshoc RM, Garg A, Grundy SM. Estimation of adipose tissue mass by magnetic resonance imaging: validation against dissection in human cadavers. J Lipid Res. 1994;35(8):1490–6.

    CAS  PubMed  Google Scholar 

  8. Shen W, Wang Z, Punyanita M, Lei J, Sinav A, Kral JG, Imielinska C, Ross R, Heymsfield SB. Adipose tissue quantification by imaging methods: a proposed classification. Obes Res. 2003;11(1):5–16.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Blunt B, Nevitt M, Fuerst T, Palermo L, Cauley J, Tylavsky F, Kelly T. Hologic whole body phantom: using in vitro data to correct in vivo whole body data. J Bone Miner Res. 2000;15 Suppl 1:S398.

    Google Scholar 

  10. Lovejoy JC, Smith SR, Rood JC. Comparison of regional fat distribution and health risk factors in middle-aged white and African American women: the healthy transitions study. Obes Res. 2001;9(1):10–6.

    Article  CAS  PubMed  Google Scholar 

  11. Smith SR, Lovejoy JC, Greenway F, Ryan D, de Jonge L, de la Bretonne J, Volafova J, Bray GA. Contributions of total body fat, abdominal subcutaneous adipose tissue compartments, and visceral adipose tissue to the metabolic complications of obesity. Metabolism. 2001;50(4):425–35.

    Article  CAS  PubMed  Google Scholar 

  12. Kelley D, Thaete F, Troost F, Huwe T, Goodpaster B. Subdivisions of subcutaneous abdominal adipose tissue and insulin resistance. Am J Physiol Endocrinol Metab. 2000;278(5):E941.

    CAS  PubMed  Google Scholar 

  13. Norton K, Olds T. Anthropometrica. Sydney: UNSW Press; 1996.

    Google Scholar 

  14. Kelly TL, Slovik DM, Neer RM. Calibration & standardization of bone mineral densitometers. J Bone Miner Res. 1989;4(5):663–9.

    Article  CAS  PubMed  Google Scholar 

  15. Laskey M, Phil D. Dual-energy x-ray absorptiometry and body composition. Nutrition. 1996;12(1):45–51.

    Article  CAS  PubMed  Google Scholar 

  16. Kelly TL, Berger N, Richardson TL. DXA body composition: theory and practice. Appl Radiat Isot. 1998;49(5–6):511–3.

    Article  CAS  PubMed  Google Scholar 

  17. Pietrobelli A, Formica C, Wang Z, Heymsfield SB. Dual-energy x-ray absorptiometry body composition model: review of physical concepts. Am J Physiol. 1996;271(6 Pt 1):E941–51.

    CAS  PubMed  Google Scholar 

  18. Blake GM, Fogelman I. Technical principles of dual energy x-ray absorptiometry. Semin Nucl Med. 1997;27(3):210–28.

    Article  CAS  PubMed  Google Scholar 

  19. Lehmann LA, Alvarez RE, Macovski A, Brody WR, et al. Generalized image combinations in dual KVP digital radiography. Med Phys. 1981;8(5):659–67.

    Article  CAS  PubMed  Google Scholar 

  20. Shepherd JA, Fan B, Lu Y, Wu XP, Wacker WK, Ergun DL, Levine MA. A multinational study to develop universal standardization of whole body bone density and composition using GE Healthcare Lunar and Hologic DXA systems. J Bone Miner Res. 2012;27(10):2208–16.

    Article  PubMed  Google Scholar 

  21. Lee K, Lee S, Kim YJ. Waist circumference, dual-energy X-ray absortiometrically measured abdominal adiposity, and computed tomographically derived intra-abdominal fat area on detecting metabolic risk factors in obese women. Nutrition. 2008;24(7–8):625–31.

    Article  PubMed  Google Scholar 

  22. Wiklund P, Toss F, Weinehall L, Hallmans G, Franks PW, Nordstrom A, Nordstrom P. Abdominal and gynoid fat mass are associated with cardiovascular risk factors in men and women. J Clin Endocrinol Metab. 2008;93(11):4360–6.

    Article  CAS  PubMed  Google Scholar 

  23. Micklesfield LK, Goedecke JH, Punyanitya M, Wilson KE, Kelly TL. Dual-energy x-ray performs as well as clinical computed tomography for the measurement of visceral fat. Obesity. 2012;20(5):1109–14.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Kaul S, Rothney MP, Peters DM, Wacker WK, Davis CE, Shapiro MD, Ergun DL. Dual-energy X-ray absorptiometry for quantification of visceral fat. Obesity. 2012;20(6):1313–8.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Kelly TL, Wilson KE, Heymsfield SB. Dual energy X-ray absorptiometry body composition reference values from NHANES. PLoS One. 2009;4(9):e7038.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Tataranni PA, Ravussin E. Use of dual-energy x-ray absorptiometry in obese individuals. Am J Clin Nutr. 1995;62(4):730–4.

    CAS  PubMed  Google Scholar 

  27. Zhao B, Colville J, Kalaigian J, et al. Automated quantification of body fat distribution on volumetric computed tomography. J Comput Assist Tomogr. 2006;30:777–83.

    Article  PubMed  Google Scholar 

  28. Ellis KJ, Shypailo RJ. Bone mineral and body composition measurements: cross-calibration of pencil-beam and fan-beam dual-energy X-ray absorptiometers. J Bone Miner Res. 1998;13:1613–8.

    Article  CAS  PubMed  Google Scholar 

  29. Ravussin E, Smith SR. Increased fat intake, impaired fat oxidation, and failure of fat cell proliferation result in ectopic fat storage, insulin resistance, and type 2 diabetes mellitus. Ann N Y Acad Sci. 2002;967:363–78.

    Article  CAS  PubMed  Google Scholar 

  30. Freedland ES. Role of a critical visceral adipose tissue threshold (CVATT) in metabolic syndrome: implications for controlling dietary carbohydrates: a review. Nutr Metab (Lond). 2004;1(12):12.

    Article  Google Scholar 

  31. Enzi G, Gasparo M, Biondetti PR, Fiore D, Semisa M, Zurlo F. Subcutaneous and visceral fat distribution according to sex, age, and overweight, evaluated by computed tomography. Am J Clin Nutr. 1986;44:739–46.

    CAS  PubMed  Google Scholar 

  32. Owens S, Gutin B, Ferguson M, Allison J, Karp W, Le NA. Visceral adipose tissue and cardiovascular risk factors in obese children. J Pediatr. 1998;133(1):41–5.

    Article  CAS  PubMed  Google Scholar 

  33. International basic safety standards for protection against ionizing radiation and for the safety of radiation sources. Vienna: IAEA; 1996.

    Google Scholar 

  34. International Atomic Energy Agency. Radiological Protection for Medical Exposure to Ionizing Radiation, IAEA safety standards series. Vienna: IAEA; 2002.

    Google Scholar 

  35. Applying radiation safety standards in diagnostic radiology and interventional procedures using X rays, Safety report series, vol. 39. Vienna: IAEA; 2006.

    Google Scholar 

  36. Blake GM, Naeem M, Boutros M. Comparison of effective dose to children and adults from dual X-ray absorptiometry examinations. Bone. 2006;38(6):935–42.

    Article  PubMed  Google Scholar 

  37. Thomas SR, Kalkwarf HJ, Buckley DD, Heubi JE. Effective dose of dual-energy X-ray absorptiometry scans in children as a function of age. J Clin Densitom. 2005;8(4):415–22.

    Article  PubMed  Google Scholar 

  38. Steel SA, Baker AJ, Saunderson JR. An assessment of the radiation dose to patients and staff from a Lunar Expert-XL fan beam densitometer. Physiol Meas. 1998;19(1):17–26.

    Article  CAS  PubMed  Google Scholar 

  39. Njeh CF, Samat SB, Nightingale A, McNeil EA, Boivin CM. Radiation dose and in vitro precision in paediatric bone mineral density measurement using dual X-ray absorptiometry. Br J Radiol. 1997;70(835):719–27.

    CAS  PubMed  Google Scholar 

  40. Bezakova E, Collins PJ, Beddoe AH. Absorbed dose measurements in dual energy X-ray absorptiometry (DXA). Br J Radiol. 1997;70:172–9.

    CAS  PubMed  Google Scholar 

  41. Njeh CF, Apple K, Temperton DH, Boivin CM. Radiological assessment of a new bone densitometer – the Lunar EXPERT. Br J Radiol. 1996;69(820):335–40.

    Article  CAS  PubMed  Google Scholar 

  42. Seidell JC, Bakker CJ, van der Kooy K. Imaging techniques for measuring adipose-tissue distribution – a comparison between computed tomography and 1.5-T magnetic resonance. Am J Clin Nutr. 1990;51(6):953–7.

    CAS  PubMed  Google Scholar 

  43. Sobol W, Rossner S, Hinson B, Hiltbrandt E, Karstaedt N, Santago P, Wolfman N, Hagaman A, Crouse 3rd JR. Evaluation of a new magnetic resonance imaging method for quantitating adipose tissue areas. Int J Obes. 1991;15(9):589–99.

    CAS  PubMed  Google Scholar 

  44. Greenfield JR, Samaras K, Chisholm DJ, Campbell LV. Regional intra-subject variability in abdominal adiposity limits usefulness of computed tomography. Obes Res. 2002;10(4):260–5.

    Article  PubMed  Google Scholar 

  45. Asayama K, Dobashi K, Hayashibe H, Kodera K, Uchida N, Nakane T, Araki T, Nakazawa S. Threshold values of visceral fat measures and their anthropometric alternatives for metabolic derangement in Japanese obese boys. Int J Obes Relat Metab Disord. 2002;26(2):208–13.

    Article  CAS  PubMed  Google Scholar 

  46. Potretzke AM, Schmitz KH, Jensen MD. Preventing overestimation of pixels in computed tomography assessment of visceral fat. Obes Res. 2004;12(10):1698–701.

    Article  PubMed  Google Scholar 

  47. UNSCEAR focuses on Chernobyl accident in general assembly report. In: United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). Vienna. 2000. Available from: www.unscear.org/unscear/publications/2000_1.html.

  48. Loy J. Exposure of humans to ionizing radiation for research purposes, Radiation protection series. Publication no. 8. Barton: Australian Radiation Protection and Nuclear Safety Agency (ARPANSA); 2005.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John A. Shepherd BS, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Shepherd, J.A. (2014). Body Composition. In: Miller, C., Krasnow, J., Schwartz, L. (eds) Medical Imaging in Clinical Trials. Springer, London. https://doi.org/10.1007/978-1-84882-710-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-710-3_12

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-709-7

  • Online ISBN: 978-1-84882-710-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics