Skip to main content

Coronary Angiography After Revascularization

  • Chapter
  • First Online:
Cardiac CT Imaging

Abstract

As a result of the high prevalence of coronary artery disease in the Western world and increasingly also in the developing countries, coronary artery revascularization, albeit complex and expensive, is one of the most frequent medical procedures. It is estimated that annually worldwide approximately 800,000 patients undergo bypass ­surgery [1], and >1.5 million cardiac percutaneous interventions are performed. With the increasing success of these procedures and improved long-term results, it is no longer current practice to perform routine invasive follow-up examination after revascularization. Only patients with evidence of recurrent ischemia undergo coronary angiography. However, the decision to perform or withhold coronary angiography can be exceedingly difficult in patients who have a history of coronary artery revascularization. Commonly, the fact that coronary artery disease has been previously established will lead many physicians to liberally order invasive coronary angiography if their patients experience symptoms faintly reminiscent of angina pectoris. In this setting, coronary CT angiography increasingly plays a role for obtaining reliable information on coronary artery anatomy noninvasively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goldman S, Zadina K, Moritz T, et al.; VA Cooperative Study Group #207/297/364. Long-term patency of saphenous vein and left internal mammary artery grafts after coronary artery bypass surgery: results from a Department of Veterans Affairs Cooperative Study. J Am Coll Cardiol. 2004;44:2149–2156.

    Google Scholar 

  2. Schwartz L, Kip KE, Frye RL, Alderman EL, Schaff HV, Detre KM; Bypass Angioplasty Revascularization Investigation. Coronary bypass graft patency in patients with diabetes in the Bypass Angioplasty Revascularization Investigation (BARI). Circulation. 2002;106:2652–2658.

    Google Scholar 

  3. Lytle BW, Loop FD, Cosgrove DM, Ratliff NB, Easley K, Taylor PC. Long-term (5 to 12 years) serial studies of internal mammary artery and saphenous vein coronary bypass grafts. J Thorac Cardiovasc Surg. 1985;89:248–258.

    PubMed  CAS  Google Scholar 

  4. Shi Y, O’Brien JE Jr, Mannion JD, et al. Remodeling of autologous saphenous vein grafts. The role of perivascular myofibroblasts. Circulation. 1997;95:2684–2693.

    Article  PubMed  CAS  Google Scholar 

  5. Fitzgibbon GM, Kafka HP, Leach AJ, Keon WJ, Hooper GD, Burton JR. Coronary bypass graft fate and patient outcome: angiographic follow-up of 5, 065 grafts related to survival and reoperation in 1, 388 patients during 25 years. J Am Coll Cardiol. 1996;28:616–626.

    Article  PubMed  CAS  Google Scholar 

  6. Berger A, MacCarthy PA, Siebert U, et al. Long-term patency of internal mammary artery bypass grafts. Relationship with preoperative severity of the native coronary artery stenosis. Circulation. 2004;110[suppl II]:II-36–II–40.

    Google Scholar 

  7. Brundage BH, Lipton MJ, Herfkens RJ, et al. Detection of patent coronary bypass grafts by computed tomography. A preliminary report. Circulation. 1980;61:826–831.

    Article  PubMed  CAS  Google Scholar 

  8. Daniel WG, Dohring W, Stender HS, Lichtlen PR. Value and limitations of computed tomography in assessing aortocoronary bypass graft patency. Circulation. 1983;67:983–987.

    Article  PubMed  CAS  Google Scholar 

  9. Achenbach S, Moshage W, Ropers D, Nossen J, Bachmann K. Noninvasive, three-dimensional visualization of coronary artery bypass grafts by electron beam tomography. Am J Cardiol. 1997;79:856–861.

    Article  PubMed  CAS  Google Scholar 

  10. Hamon M, Lepage O, Malagutti P, et al. Diagnostic performance of 16- and 64-section spiral CT for coronary artery bypass graft assessment: meta-analysis. Radiology. 2008;247:679–686.

    Article  PubMed  Google Scholar 

  11. Malagutti P, Nieman K, Meijboom WB, et al. Use of 64-slice CT in symptomatic patients after coronary bypass surgery: evaluation of grafts and coronary arteries. Eur Heart J. 2007;28:1879–1885.

    Article  PubMed  Google Scholar 

  12. Pache G, Saueressig U, Frydrychowicz A, et al. initial experience with 64-slice cardiac CT: non-invasive visualization of coronary artery bypass grafts. Eur Heart J. 2006;27:976–980.

    Article  PubMed  Google Scholar 

  13. Dikkers R, Willems TP, Tio RA, Anthonio RL, Zijlstra F, Oudkerk M. The benefit of 64-MDCT prior to invasive coronary angiography in symptomatic post-CABG patients. Int J Cardiovasc Imaging. 2006;23:369–377.

    Article  PubMed  Google Scholar 

  14. Ropers D, Pohle FK, Kuettner A, et al. Diagnostic accuracy of noninvasive coronary angiography in patients after bypass surgery using 64-slice spiral computed tomography with 330-ms gantry rotation. Circulation. 2006;114:2334–2341.

    Article  PubMed  Google Scholar 

  15. Meyer TS, Martinoff S, Hadamitzky M, et al. Improved non-invasive assessment of coronary artery bypass grafts with 64-slice computed tomographic angiography in an unselected patient population. J Am Coll Cardiol. 2007;49:946–950.

    Article  PubMed  Google Scholar 

  16. Jabara R, Chronos N, Klein L, et al. Comparison of multidetector 64-slice computed tomographic angiography to coronary angiography to assess the patency of coronary artery bypass grafts. Am J Cardiol. 2007;99:1529–1534.

    Article  PubMed  Google Scholar 

  17. Feuchtner GM, Schachner T, Bonatti J, et al. Diagnostic performance of 64-slice computed tomography in evaluation of coronary artery bypass grafts. AJR Am J Roentgenol. 2007;189:574–580.

    Article  PubMed  Google Scholar 

  18. Nazeri I, Shahabi P, Tehrai M, Sharif-Kashani B, Nazeri A. Assessment of patients after coronary artery bypass grafting using 64-slice computed tomography. Am J Cardiol. 2009;103:667–673.

    Article  PubMed  Google Scholar 

  19. Desbiolles L, Leschka S, Plass A, et al. Evaluation of temporal windows for coronary artery bypass graft imaging with 64-slice CT. Eur Radiol. 2007;17:2819–2828.

    Article  PubMed  Google Scholar 

  20. Cademartiri F, Palumbo A, Maffei E, et al. Follow-up of internal mammary artery stent with 64-slice CT. Int J Cardiovasc Imaging. 2007;23:537–539.

    Article  PubMed  Google Scholar 

  21. Hermann F, Martinoff S, Meyer T, et al. Reduction of radiation dose estimates in cardiac 64-slice CT angiography in patients after coronary artery bypass graft surgery. Invest Radiol. 2008;43:253–260.

    Article  PubMed  Google Scholar 

  22. Colombo A, Stankovic G, Moses JW. Selection of coronary stents. J Am Coll Cardiol. 2002;40:1021–1033.

    Article  PubMed  Google Scholar 

  23. Trikalinos TA, Alsheikh-Ali AA, Tatsioni A, Nallamothu BK, Kent DM. Percutaneous coronary interventions for non-acute coronary artery disease: a quantitative 20-year synopsis and a network meta-analysis. Lancet. 2009;373:911–918.

    Article  PubMed  Google Scholar 

  24. Biondi-Zoccai G, Lotrionte M, Moretti C, et al. Percutaneous coronary intervention with everolimus-eluting stents (Xience V): systematic review and direct-indirect comparison meta-analyses with paclitaxel-eluting stents (Taxus) and sirolimus-eluting stents (Cypher). Minerva Cardioangiol. 2008;56:55–65.

    PubMed  CAS  Google Scholar 

  25. Schmermund A, Haude M, Baumgart D, et al. Non-invasive assessment of coronary Palmaz-Schatz stents with contrast enhanced electron beam computed tomography. Eur Heart J. 1996;17:1546–1553.

    Article  PubMed  CAS  Google Scholar 

  26. Möhlenkamp S, Pump H, Baumgart D, et al. Minimally invasive evaluation of coronary stents with electron beam computed tomography: In vivo and in vitro experience. Catheter Cardiovasc Interv. 1999;48:39–47.

    Article  PubMed  Google Scholar 

  27. Pump H, Möhlenkamp S, Sehnert CA, et al. Coronary arterial stent patency: assessment with electron-beam CT. Radiology. 2000;214:447–452.

    PubMed  CAS  Google Scholar 

  28. Maintz D, Juergens KU, Wichter T, Grude M, Heindel W, Fischbach R. Imaging of coronary artery stents using multislice computed tomography: in vitro evaluation. Eur Radiol. 2003;13:830–835.

    PubMed  Google Scholar 

  29. Mahnken AH, Buecker A, Wildberger JE, et al. Coronary artery stents in multislice computed tomography: in vitro artifact evaluation. Invest Radiol. 2004;39:27–33.

    Article  PubMed  Google Scholar 

  30. Schlosser T, Scheuermann T, Ulzheimer S, et al. In-vitro evaluation of coronary stents and 64-detector-row computed tomography using a newly developed model of coronary artery stenosis. Acta Radiol. 2008;49:56–64.

    Article  PubMed  CAS  Google Scholar 

  31. Schlosser T, Scheuermann T, Ulzheimer S, et al. In vitro evaluation of coronary stents and in-stent stenosis using a dynamic cardiac phantom and a 64-detector row CT scanner. Clin Res Cardiol. 2007;96:883–890.

    Article  PubMed  CAS  Google Scholar 

  32. Kumbhani DJ, Ingelmo CP, Schoenhagen P, Curtin RJ, Flamm SD, Desai MY. Meta-analysis of diagnostic efficacy of 64-slice computed tomography in the evaluation of coronary in-stent restenosis. Am J Cardiol. 2009;103:1675–1681.

    Article  PubMed  Google Scholar 

  33. Sun Z, Davidson R, Lin CHS. Multi-detector row CT angiography in the assessment of coronary in-stent restenosis: a systematic review. Eur J Radiol. 2009;69:489–495.

    Article  PubMed  Google Scholar 

  34. Van Mieghem CA, Cademartiri F, Mollet NR, et al. Multislice spiral computed tomography for the evaluation of stent patency after left main coronary artery stenting: a comparison with conventional coronary angiography and intravascular ultrasound. Circulation. 2006;114:645–653.

    Article  PubMed  Google Scholar 

  35. Erbel R, Di Mario C, Bartunek J, et al. Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: a prospective, non-randomised multicentre trial. Lancet. 2007;369:1869–1875.

    Article  PubMed  CAS  Google Scholar 

  36. Erbel R, Böse D, Haude M, et al. Absorbable coronary stents. New promising technology. Herz. 2007;32:308–319.

    Article  PubMed  Google Scholar 

  37. Maintz D, Burg MC, Seifarth H, et al. Update on multidetector coronary CT angiography of coronary stents: in vitro evaluation of 29 different stent types with dual-source CT. Eur Radiol. 2009;19:42–49.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel Schmermund MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London Limited

About this chapter

Cite this chapter

Schmermund, A., Magedanz, A., Schmidt, M.J.M., Schlosser, T., Voigtländer, T. (2010). Coronary Angiography After Revascularization. In: Budoff, M., Shinbane, J. (eds) Cardiac CT Imaging. Springer, London. https://doi.org/10.1007/978-1-84882-650-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-650-2_10

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-649-6

  • Online ISBN: 978-1-84882-650-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics