Skip to main content

Cell Therapy for Cardiovascular Disease

  • Chapter
  • First Online:
Advances in Vascular Medicine

Abstract

Advances in diagnosis and treatment have dramatically impacted morbidity and mortality from cardiovascular disease over the past several decades.1 The discovery in 1960 of stem cells capable of regeneration and repair sparked interest in a new mode of therapy for heart disease beyond pharmaceuticals and cardiac devices.2 Over the past 10 years, work has focused on five key cell types - the endothelial mononuclear progenitor cell, the autologous skeletal myoblast, the allogeneic mesenchymal stem cell, the resident cardiac stem cell, and the human embryonic stem cell - as potential therapeutic agents, which may further contribute to gains in treating cardiovascular disease. This chapter aims to review these cell types, their preclinical underpinnings, the nascent clinical studies, and limitations observed in their use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tunstall-Pedoe H, Vanuzzo D, Hobbs M, et al. Estimation of contribution of changes in coronary care to improving survival, event rates, and coronary heart disease mortality across the WHO MONICA project populations. Lancet. 2000;355:688-700.

    Article  CAS  PubMed  Google Scholar 

  2. Welt FG, Losordo DW. Cell therapy for acute myocardial infarction: curb your enthusiasm? Circulation. 2006;113:1272-1274.

    Article  PubMed  Google Scholar 

  3. Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature. 1993;362:801-809.

    Article  CAS  PubMed  Google Scholar 

  4. Ingram DA, Caplice NM, Yoder MC. Unresolved questions, changing definitions, and novel paradigms for defining endothelial progenitor cells. Blood. 2005;106:1525-1531.

    Article  CAS  PubMed  Google Scholar 

  5. Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997;275:964-966.

    Article  CAS  PubMed  Google Scholar 

  6. Kalka C, Masuda H, Takahashi T, et al. Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc Natl Acad Sci U S A. 2000;97:3422-3427.

    Article  CAS  PubMed  Google Scholar 

  7. Kawamoto A, Gwon HC, Iwaguro H, et al. Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia. Circulation. 2001;103:634-637.

    CAS  PubMed  Google Scholar 

  8. Kawamoto A, Tkebuchava T, Yamaguchi J, et al. Intramyocardial transplantation of autologous endothelial progenitor cells for therapeutic neovascularization of myocardial ischemia. Circulation. 2003;107:461-468.

    Article  PubMed  Google Scholar 

  9. Aicher A, Brenner W, Zuhayra M, et al. Assessment of the tissue distribution of transplanted human endothelial progenitor cells by radioactive labeling. Circulation. 2003;107:2134-2139.

    Article  PubMed  Google Scholar 

  10. Urbich C, Dimmeler S. Endothelial progenitor cells: characterization and role in vascular biology. Circ Res. 2004;95:343-353.

    Article  CAS  PubMed  Google Scholar 

  11. Dohmann HF, Perin EC, Takiya CM, et al. Transendocardial autologous bone marrow mononuclear cell injection in ischemic heart failure: postmortem anatomicopathologic and immunohistochemical findings. Circulation. 2005;112:521-526.

    Article  PubMed  Google Scholar 

  12. Murry CE, Soonpaa MH, Reinecke H, et al. Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature. 2004;428:664-668.

    Article  CAS  PubMed  Google Scholar 

  13. Badorff C, Brandes RP, Popp R, et al. Transdifferentiation of blood-derived human adult endothelial progenitor cells into functionally active cardiomyocytes. Circulation. 2003;107:1024-1032.

    Article  PubMed  Google Scholar 

  14. Kubal C, Sheth K, Nadal-Ginard B, Galinanes M. Bone marrow cells have a potent anti-ischemic effect against myocardial cell death in humans. J Thorac Cardiovasc Surg. 2006;132:1112-1118.

    Article  PubMed  Google Scholar 

  15. Ziegelhoeffer T, Fernandez B, Kostin S, et al. Bone marrow-derived cells do not incorporate into the adult growing vasculature. Circ Res. 2004;94:230-238.

    Article  CAS  PubMed  Google Scholar 

  16. Rehman J, Li J, Orschell CM, March KL. Peripheral blood “endothelial progenitor cells” are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation. 2003;107:1164-1169.

    Article  PubMed  Google Scholar 

  17. Strauer BE, Brehm M, Zeus T, et al. Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation. 2002;106:1913-1918.

    Article  PubMed  Google Scholar 

  18. Schachinger V, Assmus B, Britten MB, et al. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction: final one-year results of the TOPCARE-AMI trial. J Am Coll Cardiol. 2004;44:1690-1699.

    Article  PubMed  Google Scholar 

  19. Beeres SLMA, Bax JJ, Dibbets-Schneider P, et al. Sustained effect of autologous bone marrow mononuclear cell injection in patients with refractory angina pectoris and chronic myocardial ischemia: twelve-month follow-up results. Am Heart J. 2006;152:684.e11-684.e16.

    Article  Google Scholar 

  20. de la Fuente LM, Stertzer SH, Argentieri J, et al. Transendocardial autologous bone marrow in chronic myocardial infarction using a helical needle catheter: 1-year follow-up in an open-label, nonrandomized, single-center pilot study (the TABMMI study). Am Heart J. 2007;154:79.e1-79.e7.

    Article  Google Scholar 

  21. Stamm C, Kleine HD, Choi YH, et al. Intramyocardial delivery of CD133+ bone marrow cells and coronary artery bypass grafting for chronic ischemic heart disease: safety and efficacy studies. J Thorac Cardiovasc Surg. 2007;133:717-725.

    Article  PubMed  Google Scholar 

  22. Fernandez-Aviles F, San Roman JA, Garcia-Frade J, et al. Experimental and clinical regenerative capability of human bone marrow cells after myocardial infarction. Circ Res. 2004;95:742-748.

    Article  CAS  PubMed  Google Scholar 

  23. Chen S-L, Fang W-W, Ye F, et al. Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. Am J Cardiol. 2004;94:92-95.

    Article  PubMed  Google Scholar 

  24. Bartunek J, Vanderheyden M, Vandekerckhove B, et al. Intracoronary injection of CD133-positive enriched bone marrow progenitor cells promotes cardiac recovery after recent myocardial infarction: feasibility and safety. Circulation. 2005;112:I178-I183.

    PubMed  Google Scholar 

  25. Wollert KC, Meyer GP, Lotz J, et al. Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet. 2004;364:141-148.

    Article  PubMed  Google Scholar 

  26. Meyer GP, Wollert KC, Lotz J, et al. Intracoronary bone marrow cell transfer after myocardial infarction: eighteen months’ follow-up data from the randomized, controlled BOOST (BOne marrOw transfer to enhance ST-elevation infarct regeneration) trial. Circulation. 2006;113:1287-1294.

    Article  PubMed  Google Scholar 

  27. Schachinger V, Erbs S, Elsasser A, et al. Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N Engl J Med. 2006;355:1210-1221.

    Article  CAS  PubMed  Google Scholar 

  28. Lunde K, Solheim S, Aakhus S, et al. Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. N Engl J Med. 2006;355:1199-1209.

    Article  CAS  PubMed  Google Scholar 

  29. Janssens S, Dubois C, Bogaert J, et al. Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomised controlled trial. Lancet. 2006;367:113-121.

    Article  PubMed  Google Scholar 

  30. Ge J, Li Y, Qian J, et al. Efficacy of emergent transcatheter transplantation of stem cells for treatment of acute myocardial infarction (TCT-STAMI). Heart. 2006;92:1764-1767.

    Article  CAS  PubMed  Google Scholar 

  31. Meluzin J, Mayer J, Groch L, et al. Autologous transplantation of mononuclear bone marrow cells in patients with acute myocardial infarction: The effect of the dose of transplanted cells on myocardial function. Am Heart J. 2006;152:975.e9-975.e15.

    Article  Google Scholar 

  32. Kang H-J, Lee H-Y, Na S-H, et al. Differential effect of intracoronary infusion of mobilized peripheral blood stem cells by granulocyte colony-stimulating factor on left ventricular function and remodeling in patients with acute myocardial infarction versus old myocardial infarction: the MAGIC Cell-3-DES randomized, controlled trial. Circulation. 2006;114:I145-I151.

    PubMed  Google Scholar 

  33. Li Z-Q, Zhang M, Jing Y-Z, et al. The clinical study of autologous peripheral blood stem cell transplantation by intracoronary infusion in patients with acute myocardial infarction (AMI). Int J Cardiol. 2007;115:52-56.

    Article  PubMed  Google Scholar 

  34. Assmus B, Schachinger V, Teupe C, et al. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI). Circulation. 2002;106:3009-3017.

    Article  PubMed  Google Scholar 

  35. Zohlnhofer D, Dibra A, Koppara T, et al. Stem cell mobilization by granulocyte colony-stimulating factor for myocardial recovery after acute myocardial infarction: a meta-analysis. J Am Coll Cardiol. 2008;51:1429-1437.

    Article  PubMed  CAS  Google Scholar 

  36. Strauer BE, Brehm M, Zeus T, et al. Regeneration of human infarcted heart muscle by intracoronary autologous bone marrow cell transplantation in chronic coronary artery disease: the IACT Study. J Am Coll Cardiol. 2005;46:1651-1658.

    Article  PubMed  Google Scholar 

  37. Perin EC, Dohmann HFR, Borojevic R, et al. Improved exercise capacity and ischemia 6 and 12 months after transendocardial injection of autologous bone marrow mononuclear cells for ischemic cardiomyopathy. Circulation. 2004;110:II213-II218.

    Article  PubMed  Google Scholar 

  38. Erbs S, Linke A, Adams V, et al. Transplantation of blood-derived progenitor cells after recanalization of chronic coronary artery occlusion: first randomized and placebo-controlled study. Circ Res. 2005;97:756-762.

    Article  CAS  PubMed  Google Scholar 

  39. Mocini D, Staibano M, Mele L, et al. Autologous bone marrow mononuclear cell transplantation in patients undergoing coronary artery bypass grafting. Am Heart J. 2006;151:192-197.

    Article  PubMed  Google Scholar 

  40. Katritsis DG, Sotiropoulou PA, Karvouni E, et al. Transcoronary transplantation of autologous mesenchymal stem cells and endothelial progenitors into infarcted human myocardium. Catheter Cardiovasc Interv. 2005;65:321-329.

    Article  PubMed  Google Scholar 

  41. Heeschen C, Lehmann R, Honold J, et al. Profoundly reduced neovascularization capacity of bone marrow mononuclear cells derived from patients with chronic ischemic heart disease. Circulation. 2004;109:1615-1622.

    Article  PubMed  Google Scholar 

  42. Taylor DA, Atkins BZ, Hungspreugs P, et al. Regenerating functional myocardium: improved performance after skeletal myoblast transplantation. Nat Med. 1998;4:929-933.

    Article  CAS  PubMed  Google Scholar 

  43. Taylor DA. Cellular cardiomyoplasty with autologous skeletal myoblasts for ischemic heart disease and heart failure. Curr Control Trials Cardiovasc Med. 2001;2:208-210.

    Article  PubMed  Google Scholar 

  44. Atkins BZ, Lewis CW, Kraus WE, Hutcheson KA, Glower DD, Taylor DA. Intracardiac transplantation of skeletal myoblasts yields two populations of striated cells in situ. Ann Thorac Surg. 1999;67:124-129.

    Article  CAS  PubMed  Google Scholar 

  45. Atkins BZ, Hueman MT, Meuchel J, Hutcheson KA, Glower DD, Taylor DA. Cellular cardiomyoplasty improves diastolic properties of injured heart. J Surg Res. 1999;85:234-242.

    Article  CAS  PubMed  Google Scholar 

  46. Atkins BZ, Hueman MT, Meuchel JM, Cottman MJ, Hutcheson KA, Taylor DA. Myogenic cell transplantation improves in vivo regional performance in infarcted rabbit myocardium. J Heart Lung Transplant. 1999;18:1173-1180.

    Article  CAS  PubMed  Google Scholar 

  47. Hutcheson KA, Atkins BZ, Hueman MT, Hopkins MB, Glower DD, Taylor DA. Comparison of benefits on myocardial performance of cellular cardiomyoplasty with skeletal myoblasts and fibroblasts. Cell Transplant. 2000;9:359-368.

    CAS  PubMed  Google Scholar 

  48. Pouly J, Hagege AA, Vilquin JT, et al. Does the functional efficacy of skeletal myoblast transplantation extend to nonischemic cardiomyopathy? Circulation. 2004;110:1626-1631.

    Article  PubMed  Google Scholar 

  49. Iijima Y, Nagai T, Mizukami M, et al. Beating is necessary for transdifferentiation of skeletal muscle-derived cells into cardiomyocytes. Faseb J. 2003;17:1361-1363.

    CAS  PubMed  Google Scholar 

  50. Thompson RB, Emani SM, Davis BH, et al. Comparison of intracardiac cell transplantation: autologous skeletal myoblasts versus bone marrow cells. Circulation. 2003;108(1):II264-II271.

    Article  PubMed  Google Scholar 

  51. Chazaud B, Hittinger L, Sonnet C, et al. Endoventricular porcine autologous myoblast transplantation can be successfully achieved with minor mechanical cell damage. Cardiovasc Res. 2003;58:444-450.

    Article  CAS  PubMed  Google Scholar 

  52. Ohno N, Fedak PW, Weisel RD, Mickle DA, Fujii T, Li RK. Transplantation of cryopreserved muscle cells in dilated cardiomyopathy: effects on left ventricular geometry and function. J Thorac Cardiovasc Surg. 2003;126:1537-1548.

    Article  PubMed  Google Scholar 

  53. Gulbins H, Schrepfer S, Uhlig A, et al. Myoblasts survive intracardiac transfer and divide further after transplantation. Heart Surg Forum. 2002;5:340-344.

    PubMed  Google Scholar 

  54. Zhong H, Zhu H, Wei H, Zhang Z. Influence of skeletal muscle satellite cells implanted into infarcted myocardium on remnant myocyte volumes. Chin Med J (Engl). 2003;116:1088-1091.

    Google Scholar 

  55. Ghostine S, Carrion C, Souza LC, et al. Long-term efficacy of myoblast transplantation on regional structure and function after myocardial infarction. Circulation. 2002;106:I131-I136.

    PubMed  Google Scholar 

  56. Zhong H, Zhu H, Zhang Z. Affects of different access routes on autologous satellite cell implantation stimulating myocardial regeneration. Chin Med J (Engl). 2002;115:1521-1524.

    Google Scholar 

  57. Hagege AA, Carrion C, Menasche P, et al. Viability and differentiation of autologous skeletal myoblast grafts in ischaemic cardiomyopathy. Lancet. 2003;361:491-492.

    Article  PubMed  Google Scholar 

  58. Pagani FD, DerSimonian H, Zawadzka A, et al. Autologous skeletal myoblasts transplanted to ischemia-damaged myocardium in humans. Histological analysis of cell survival and differentiation. J Am Coll Cardiol. 2003;41:879-888.

    Article  PubMed  Google Scholar 

  59. Menasche P. Myoblast transplantation: feasibility, safety and efficacy. Ann Med. 2002;34:314-315.

    Article  CAS  PubMed  Google Scholar 

  60. Menasche P, Hagege AA, Vilquin JT, et al. Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction. J Am Coll Cardiol. 2003;41:1078-1083.

    Article  PubMed  Google Scholar 

  61. Hagege AA, Marolleau JP, Vilquin JT, et al. Skeletal myoblast transplantation in ischemic heart failure: long-term follow-up of the first phase I cohort of patients. Circulation. 2006;114:I108-I113.

    Article  PubMed  Google Scholar 

  62. Menasche P, Alfieri O, Janssens S, et al. The myoblast autologous grafting in ischemic cardiomyopathy (MAGIC) trial: first randomized placebo-controlled study of myoblast transplantation. Circulation. 2008;117:1189-1200.

    Article  PubMed  Google Scholar 

  63. Siminiak T, Kalawski R, Fiszer D, et al. Autologous skeletal myoblast transplantation for the treatment of postinfarction myocardial injury: phase I clinical study with 12 months of follow-up. Am Heart J. 2004;148:531-537.

    Article  PubMed  Google Scholar 

  64. Dib N, Michler RE, Pagani FD, et al. Safety and feasibility of autologous myoblast transplantation in patients with ischemic cardiomyopathy: four-year follow-up. Circulation. 2005;112:1748-1755.

    Article  PubMed  Google Scholar 

  65. Dib N, McCarthy P, Campbell A, et al. Feasibility and safety of autologous myoblast transplantation in patients with ischemic cardiomyopathy. Cell Transplant. 2005;14:11-19.

    Article  PubMed  Google Scholar 

  66. Smits PC, van Geuns RJ, Poldermans D, et al. Catheter-based intramyocardial injection of autologous skeletal myoblasts as a primary treatment of ischemic heart failure: clinical experience with six-month follow-up. J Am Coll Cardiol. 2003;42:2063-2069.

    Article  PubMed  Google Scholar 

  67. Biagini E, Valgimigli M, Smits PC, et al. Stress and tissue Doppler echocardiographic evidence of effectiveness of myoblast transplantation in patients with ischaemic heart failure. Eur J Heart Fail. 2006;8:641-648.

    Article  PubMed  Google Scholar 

  68. Ince H, Petzsch M, Rehders TC, Chatterjee T, Nienaber CA. Transcatheter transplantation of autologous skeletal myoblasts in postinfarction patients with severe left ventricular dysfunction. J Endovasc Ther. 2004;11:695-704.

    Article  PubMed  Google Scholar 

  69. Brasselet C, Morichetti MC, Messas E, et al. Skeletal myoblast transplantation through a catheter-based coronary sinus approach: an effective means of improving function of infarcted myocardium. Eur Heart J. 2005;26:1551-1556.

    Article  PubMed  Google Scholar 

  70. Abraham MR, Henrikson CA, Tung L, et al. Antiarrhythmic engineering of skeletal myoblasts for cardiac transplantation. Circ Res. 2005;97:159-167.

    Article  CAS  PubMed  Google Scholar 

  71. Chen M, Fan ZC, Liu XJ, et al. Effects of autologous stem cell transplantation on ventricular electrophysiology in doxorubicin-induced heart failure. Cell Biol Int. 2006;30:576-582.

    Article  CAS  PubMed  Google Scholar 

  72. Roell W, Lewalter T, Sasse P, et al. Engraftment of connexin 43-expressing cells prevents post-infarct arrhythmia. Nature. 2007;450:819-824.

    Article  CAS  PubMed  Google Scholar 

  73. Kehat I, Kenyagin-Karsenti D, Snir M, et al. Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J Clin Invest. 2001;108:407-414.

    CAS  PubMed  Google Scholar 

  74. Tolmachov O, Ma YL, Themis M, et al. Overexpression of connexin 43 using a retroviral vector improves electrical coupling of skeletal myoblasts with cardiac myocytes in vitro. BMC Cardiovasc Disord. 2006;6:25.

    Article  PubMed  Google Scholar 

  75. Grinnemo KH, Mansson A, Dellgren G, et al. Xenoreactivity and engraftment of human mesenchymal stem cells transplanted into infarcted rat myocardium. J Thorac Cardiovasc Surg. 2004;127:1293-1300.

    Article  CAS  PubMed  Google Scholar 

  76. Di Nicola M, Carlo-Stella C, Magni M, et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood. 2002;99:3838-3843.

    Article  PubMed  Google Scholar 

  77. Tse WT, Pendleton JD, Beyer WM, Egalka MC, Guinan EC. Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation. 2003;75:389-397.

    Article  CAS  PubMed  Google Scholar 

  78. Onishchenko NA, Potapov IV, Bashkina LV, Krasheninnikov ME, Zaidenov VA, Avramov PV. Recovery of contractile function of cryodamaged rat myocardium after transplantation of fetal cardiomyocytes and predifferentiated bone marrow stromal stem cells. Bull Exp Biol Med. 2004;138:357-360.

    CAS  PubMed  Google Scholar 

  79. Dai W, Hale SL, Martin BJ, et al. Allogeneic mesenchymal stem cell transplantation in postinfarcted rat myocardium: short- and long-term effects. Circulation. 2005;112:214-223.

    Article  PubMed  Google Scholar 

  80. Piao H, Youn TJ, Kwon JS, et al. Effects of bone marrow derived mesenchymal stem cells transplantation in acutely infarcting myocardium. Eur J Heart Fail. 2005;7:730-738.

    Article  CAS  PubMed  Google Scholar 

  81. Amado LC, Saliaris AP, Schuleri KH, et al. Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction. Proc Natl Acad Sci U S A. 2005;102:11474-11479.

    Article  CAS  PubMed  Google Scholar 

  82. Amado LC, Schuleri KH, Saliaris AP, et al. Multimodality noninvasive imaging demonstrates in vivo cardiac regeneration after mesenchymal stem cell therapy. J Am Coll Cardiol. 2006;48:2116-2124.

    Article  PubMed  Google Scholar 

  83. Poh KK, Sperry E, Young RG, Freyman T, Barringhaus KG, Thompson CA. Repeated direct endomyocardial transplantation of allogeneic mesenchymal stem cells: safety of a high dose, “off-the-shelf,” cellular cardiomyoplasty strategy. Int J Cardiol. 2007;117:360-364.

    Article  PubMed  Google Scholar 

  84. Schuleri KH, Amado LC, Boyle AJ, et al. Early improvement in cardiac tissue perfusion due to mesenchymal stem cells. Am J Physiol Heart Circ Physiol. 2008;294(5):H2002-H2011.

    Article  CAS  PubMed  Google Scholar 

  85. Patel AN, Spadaccio C, Kuzman M, et al. Improved cell survival in infarcted myocardium using a novel combination transmyocardial laser and cell delivery system. Cell Transplant. 2007;16:899-905.

    Article  PubMed  Google Scholar 

  86. Mazhari R, Hare JM. Mechanisms of action of mesenchymal stem cells in cardiac repair: potential influences on the cardiac stem cell niche. Nat Clin Pract Cardiovasc Med. 2007;4(1):S21-S26.

    Article  PubMed  Google Scholar 

  87. Messina E, De Angelis L, Frati G, et al. Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ Res. 2004;95:911-921.

    Article  CAS  PubMed  Google Scholar 

  88. Beltrami AP, Barlucchi L, Torella D, et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell. 2003;114:763-776.

    Article  CAS  PubMed  Google Scholar 

  89. Smith RR, Barile L, Cho HC, et al. Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation. 2007;115:896-908.

    Article  PubMed  CAS  Google Scholar 

  90. Oh H, Bradfute SB, Gallardo TD, et al. Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc Natl Acad Sci U S A. 2003;100:12313-12318.

    Article  CAS  PubMed  Google Scholar 

  91. Di Meglio F, Nurzynska D, Castaldo C, et al. In vitro cultured progenitors and precursors of cardiac cell lineages from human normal and post-ischemic hearts. Eur J Histochem. 2007;51:275-282.

    PubMed  Google Scholar 

  92. Urbich C, Aicher A, Heeschen C, et al. Soluble factors released by endothelial progenitor cells promote migration of endothelial cells and cardiac resident progenitor cells. J Mol Cell Cardiol. 2005;39:733-742.

    Article  CAS  PubMed  Google Scholar 

  93. Condorelli G, Catalucci D. Human stem cells for heart failure treatment ready for prime time? J Am Coll Cardiol. 2007;50:1894-1895.

    Article  PubMed  Google Scholar 

  94. Mummery C, Ward-van Oostwaard D, Doevendans P, et al. Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells. Circulation. 2003;107:2733-2740.

    Article  CAS  PubMed  Google Scholar 

  95. Nakamura T, Schneider MD. The way to a human’s heart is through the stomach: visceral endoderm-like cells drive human embryonic stem cells to a cardiac fate. Circulation. 2003;107:2638-2639.

    Article  PubMed  Google Scholar 

  96. Xue T, Cho HC, Akar FG, et al. Functional integration of electrically active cardiac derivatives from genetically engineered human embryonic stem cells with quiescent recipient ventricular cardiomyocytes: insights into the development of cell-based pacemakers. Circulation. 2005;111:11-20.

    Article  PubMed  Google Scholar 

  97. Plotnikov AN, Shlapakova I, Szabolcs MJ, et al. Xenografted adult human mesenchymal stem cells provide a platform for sustained biological pacemaker function in canine heart. Circulation. 2007;116:706-713.

    Article  PubMed  Google Scholar 

  98. Laflamme MA, Gold J, Xu C, et al. Formation of human myocardium in the rat heart from human embryonic stem cells. Am J Pathol. 2005;167:663-671.

    CAS  PubMed  Google Scholar 

  99. Singh AM, Li FQ, Hamazaki T, Kasahara H, Takemaru K, Terada N. Chibby, an antagonist of the Wnt/beta-catenin pathway, facilitates cardiomyocyte differentiation of murine embryonic stem cells. Circulation. 2007;115:617-626.

    Article  CAS  PubMed  Google Scholar 

  100. Leor J, Gerecht S, Cohen S, et al. Human embryonic stem cell transplantation to repair the infarcted myocardium. Heart. 2007;93:1278-1284.

    Article  PubMed  Google Scholar 

  101. Caspi O, Huber I, Kehat I, et al. Transplantation of human embryonic stem cell-derived cardiomyocytes improves myocardial performance in infarcted rat hearts. J Am Coll Cardiol. 2007;50:1884-1893.

    Article  PubMed  Google Scholar 

  102. Tang GH, Fazel S, Weisel RD, Verma S, Li RK. Optimizing cardiac cell therapy: from processing to delivery. J Thorac Cardiovasc Surg. 2005;130:966-968.

    Article  PubMed  Google Scholar 

  103. Gaudette GR, Cohen IS. Cardiac regeneration: materials can improve the passive properties of myocardium, but cell therapy must do more. Circulation. 2006;114:2575-2577.

    Article  PubMed  Google Scholar 

  104. Chachques JC, Trainini JC, Lago N, Cortes-Morichetti M, Schussler O, Carpentier A. Myocardial assistance by grafting a new bioartificial upgraded myocardium (MAGNUM trial): clinical feasibility study. Ann Thorac Surg. 2008;85:901-908.

    Article  PubMed  Google Scholar 

  105. Christman KL, Vardanian AJ, Fang Q, Sievers RE, Fok HH, Lee RJ. Injectable fibrin scaffold improves cell transplant survival, reduces infarct expansion, and induces neovasculature formation in ischemic myocardium. J Am Coll Cardiol. 2004;44:654-660.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arshed A. Quyyumi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag London

About this chapter

Cite this chapter

Murrow, J.R., Dhawan, S.S., Quyyumi, A.A. (2009). Cell Therapy for Cardiovascular Disease. In: Abraham, D., Clive, H., Dashwood, M., Coghlan, G. (eds) Advances in Vascular Medicine. Springer, London. https://doi.org/10.1007/978-1-84882-637-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-637-3_8

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-636-6

  • Online ISBN: 978-1-84882-637-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics