Skip to main content

Animal Models of Atherosclerosis

  • Chapter
  • First Online:
Advances in Vascular Medicine

Abstract

Atherosclerosis has been studied in animals for exactly a century, starting with the pioneering studies of Ignatowski (reviewed in ref.).1 The motivation for those early studies is unclear, as atherosclerosis was not then recognized as a major disease. However, the increasing prevalence of cardiovascular disorders within the global burden of disease2 has given the desire to understand and treat atherosclerosis ever greater impetus. Animal models have an important part to play in this, in two main regards: increasing our understanding of the pathophysiology of atherosclerosis and developing new treatments for the disease. This chapter takes the view that most of the atherosclerosis research done in animal models until now has served the first purpose well, but the second rather poorly. To support this contention, it will be necessary to consider how atherosclerosis starts and develops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gross DR. Animal Models in Cardiovascular Research. Developments in Cardiovascular Medicine. vol. 153. Dordrecht: Kluwer; 1994.

    Google Scholar 

  2. Mathers C, Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 2006;3:e442.

    Article  PubMed  Google Scholar 

  3. Roberts JC, Straus R, Cooper MS, eds. Comparative Atherosclerosis. New York: Hoeber Medical Division; 1965.

    Google Scholar 

  4. Harker LA, Ross R, Slichter SJ, Scott CR. Homocystine-induced arteriosclerosis. The role of endothelial cell injury and platelet response in its genesis. J Clin Invest. 1976;58:731-741.

    Article  CAS  PubMed  Google Scholar 

  5. Kunz J. Proliferation, migration and cell renewal within the arterial wall. Acta Histochem Suppl. 1983;27:233-243.

    CAS  PubMed  Google Scholar 

  6. Johnson JL, Jackson CL. Atherosclerotic plaque rupture in the apolipoprotein E knockout mouse. Atherosclerosis. 2001;154:399-406.

    Article  CAS  PubMed  Google Scholar 

  7. Falk E. Why do plaques rupture? Circulation. 1992;86:III30-III42.

    CAS  PubMed  Google Scholar 

  8. Burke AP, Kolodgie FD, Farb A, et al. Healed plaque ruptures and sudden coronary death: evidence that subclinical rupture has a role in plaque progression. Circulation. 2001;103:934-940.

    CAS  PubMed  Google Scholar 

  9. Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol. 2000;20:1262-1275.

    CAS  PubMed  Google Scholar 

  10. Jackson CL, Bennett MR, Biessen EA, Johnson JL, Krams R. Assessment of unstable atherosclerosis in mice. Arterioscler Thromb Vasc Biol. 2007;27:714-720.

    Article  CAS  PubMed  Google Scholar 

  11. Tsakiris DA, Scudder L, Hodivala-Dilke K, Hynes RO, Coller BS. Hemostasis in the mouse (Mus musculus): a review. Thromb Haemost. 1999;81:177-188.

    CAS  PubMed  Google Scholar 

  12. Zhu Y, Carmeliet P, Fay WP. Plasminogen activator inhibitor-1 is a major determinant of arterial thrombolysis resistance. Circulation. 1999;99:3050-3055.

    CAS  PubMed  Google Scholar 

  13. Bouma BN, Meijers JC. Thrombin-activatable fibrinolysis inhibitor (TAFI, plasma procarboxypeptidase B, procarboxypeptidase R, procarboxypeptidase U). J Thromb Haemost. 2003;1:1566-1574.

    Article  CAS  PubMed  Google Scholar 

  14. te Velde EA, Wagenaar GT, Reijerkerk A, et al. Impaired healing of cutaneous wounds and colonic anastomoses in mice lacking thrombin-activatable fibrinolysis inhibitor. J Thromb Haemost. 2003;1:2087-2096.

    Article  CAS  PubMed  Google Scholar 

  15. Takano M, Inami S, Ishibashi F, et al. Angioscopic follow-up study of coronary ruptured plaques in nonculprit lesions. J Am Coll Cardiol. 2005;45:652-658.

    Article  PubMed  Google Scholar 

  16. Friedman M. The pathogenesis of coronary plaques, thromboses, and hemorrhages: an evaluative review. Circulation. 1975;52:III34-III40.

    CAS  PubMed  Google Scholar 

  17. Mann J, Davies MJ. Mechanisms of progression in native coronary artery disease: role of healed plaque disruption. Heart. 1999;82:265-268.

    CAS  PubMed  Google Scholar 

  18. Plump AS, Smith JD, Hayek T, et al. Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells. Cell. 1992;71:343-353.

    Article  CAS  PubMed  Google Scholar 

  19. Zhang SH, Reddick RL, Piedrahita JA, Maeda N. Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Science. 1992;258:468-471.

    Article  CAS  PubMed  Google Scholar 

  20. Reddick RL, Zhang SH, Maeda N. Aortic atherosclerotic plaque injury in apolipoprotein E deficient mice. Atherosclerosis. 1998;140:297-305.

    Article  CAS  PubMed  Google Scholar 

  21. Eitzman DT, Westrick RJ, Xu Z, Tyson J, Ginsburg D. Hyperlipidemia promotes thrombosis after injury to atherosclerotic vessels in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol. 2000;20:1831-1834.

    CAS  PubMed  Google Scholar 

  22. von der Thusen JH, van Berkel TJ, Biessen EA. Induction of rapid atherogenesis by perivascular carotid collar placement in apolipoprotein E-deficient and low-density lipoprotein receptor-deficient mice. Circulation. 2001;103:1164-1170.

    PubMed  Google Scholar 

  23. von der Thusen JH, van Vlijmen BJ, Hoeben RC, et al. Induction of atherosclerotic plaque rupture in apolipoprotein E−/− mice after adenovirus-mediated transfer of p53. Circulation. 2002;105:2064-2070.

    Article  PubMed  Google Scholar 

  24. Cheng C, Tempel D, van Haperen R, et al. Atherosclerotic lesion size and vulnerability are determined by patterns of fluid shear stress. Circulation. 2006;113:2744-2753.

    Article  PubMed  Google Scholar 

  25. Rosenfeld ME, Polinsky P, Virmani R, Kauser K, Rubanyi G, Schwartz SM. Advanced atherosclerotic lesions in the innominate artery of the ApoE knockout mouse. Arterioscler Thromb Vasc Biol. 2000;20:2587-2592.

    CAS  PubMed  Google Scholar 

  26. Johnson J, Carson K, Williams H, et al. Plaque rupture after short periods of fat feeding in the apolipoprotein E-knockout mouse: model characterization and effects of pravastatin treatment. Circulation. 2005;111:1422-1430.

    Article  CAS  PubMed  Google Scholar 

  27. Williams H, Johnson JL, Carson KG, Jackson CL. Characteristics of intact and ruptured atherosclerotic plaques in brachiocephalic arteries of apolipoprotein E knockout mice. Arterioscler Thromb Vasc Biol. 2002;22:788-792.

    Article  CAS  PubMed  Google Scholar 

  28. Bennett MR. Breaking the plaque: evidence for plaque rupture in animal models of atherosclerosis. Arterioscler Thromb Vasc Biol. 2002;22:713-714.

    Article  CAS  PubMed  Google Scholar 

  29. Caligiuri G, Levy B, Pernow J, Thoren P, Hansson GK. Myocardial infarction mediated by endothelin receptor signaling in hypercholesterolemic mice. Proc Natl Acad Sci U S A. 1999;96:6920-6924.

    Article  CAS  PubMed  Google Scholar 

  30. Braun A, Trigatti BL, Post MJ, et al. Loss of SR-BI expression leads to the early onset of occlusive atherosclerotic coronary artery disease, spontaneous myocardial infarctions, severe cardiac dysfunction, and premature death in apolipoprotein E-deficient mice. Circ Res. 2002;90:270-276.

    Article  CAS  PubMed  Google Scholar 

  31. Herrera VM, Didishvili T, Lopez LV, et al. Hypertension exacerbates coronary artery disease in transgenic hyperlipidemic Dahl salt-sensitive hypertensive rats. Mol Med. 2001;7:831-844.

    CAS  PubMed  Google Scholar 

  32. Constantinides P, Chakravarti RN. Rabbit arterial thrombosis production by systemic procedures. Arch Pathol. 1961;72:197-208.

    CAS  PubMed  Google Scholar 

  33. Abela GS, Picon PD, Friedl SE, et al. Triggering of plaque disruption and arterial thrombosis in an atherosclerotic rabbit model. Circulation. 1995;91:776-784.

    CAS  PubMed  Google Scholar 

  34. Rekhter MD, Hicks GW, Brammer DW, et al. Animal model that mimics atherosclerotic plaque rupture. Circ Res. 1998;83:705-713.

    CAS  PubMed  Google Scholar 

  35. Granada JF, Moreno PR, Burke AP, Schulz DG, Raizner AE, Kaluza GL. Endovascular needle injection of cholesteryl linoleate into the arterial wall produces complex vascular lesions identifiable by intravascular ultrasound: early development in a porcine model of vulnerable plaque. Coron Artery Dis. 2005;16:217-224.

    Article  PubMed  Google Scholar 

  36. Prescott MF, McBride CH, Hasler-Rapacz J, Von Linden J, Rapacz J. Development of complex atherosclerotic lesions in pigs with inherited hyper-LDL cholesterolemia bearing mutant alleles for apolipoprotein B. Am J Pathol. 1991;139:139-147.

    CAS  PubMed  Google Scholar 

  37. Johnson JL. The Role of Matrix Metalloproteinases in an Animal Model of Atherosclerotic Plaque Rupture. Bristol Heart Institute, University of Bristol; 2005.

    Google Scholar 

Download references

Acknowledgments

The author is grateful to Dr. Jason Johnson for permission to reproduce the figures, for useful scientific discussions, and for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Jackson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag London

About this chapter

Cite this chapter

Jackson, C., Benbow, U., Bond, A., Galley, D., Schwartz, C. (2009). Animal Models of Atherosclerosis. In: Abraham, D., Clive, H., Dashwood, M., Coghlan, G. (eds) Advances in Vascular Medicine. Springer, London. https://doi.org/10.1007/978-1-84882-637-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-637-3_4

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-636-6

  • Online ISBN: 978-1-84882-637-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics