Skip to main content

Bone, Cartilage, and Fibrous Tissue Disorders

  • Chapter
  • First Online:
Children's Orthopaedics and Fractures
  • 2744 Accesses

Abstract

The disorders to be considered in this chapter are mostly inherited conditions of the musculoskeletal system. There are many hundreds of them, but only the major ones will be considered because the purpose of this chapter is to provide an approach to diagnosis and treatment rather than an encyclopedic account of every known inherited disorder of bone, cartilage, and fibrous tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Cloth bound cover Book
USD 169.99
Price excludes VAT (USA)
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Johns Hopkins University. OMIM—Online Mendelian Inheritance in Man. At: www3.ncbi.nlm.nih.gov/Omim. Accessed 31 August 2008.

    Google Scholar 

  2. McKusick VA. Mendelian inheritance in man. Catalogs of autosomal dominant, autosomal recessive, and X-linked phenotypes. Baltimore: The Johns Hopkins University Press; 1990.

    Google Scholar 

  3. Cole WG. The molecular pathology of osteogenesis imperfecta. Clin Orthop 1997; 343:235–46.

    PubMed  Google Scholar 

  4. Sillence DO, Senn A, Danks DM. Genetic heterogeneity in osteogenesis imperfecta. J Med Gen 1979; 16:101–16.

    Article  CAS  Google Scholar 

  5. Glorieux FH, Bishop NJ, Plotkin H, et al. Cyclic administration of pamidronate in children with severe osteogenesis imperfecta. New Eng J Med 1998; 339:947–52.

    Article  PubMed  CAS  Google Scholar 

  6. Sofield HA, Page MA, Mead NC. Multiple osteotomies and metal-rod fixation for osteogenesis imperfecta. J Bone Joint Surg 1952; 34A:500–2.

    Google Scholar 

  7. Briggs MD, Mortier OGR, Cole WG, et al. Diverse mutations in the gene for cartilage oligomeric matrix protein in the pseudoachondroplasia—multiple epiphyseal dysplasia disease spectrum. Am J Hum Gen 1998; 62:311–9.

    Article  CAS  Google Scholar 

  8. Hecht JT, Deere M, Putnam E, et al. Characterization of cartilage oligomeric matrix protein (COMP) in human normal and pseudoachondroplasia musculoskeletal tissues. Matrix Biol 1998; 17:269–78.

    Article  PubMed  CAS  Google Scholar 

  9. Susic S, McGrory J, Ahier J, Cole WG. Multiple epiphyseal dysplasia and pseudoachondroplasia due to novel mutations in the calmodulin—like repeats of cartilage oligomeric matrix protein. Clin Gen 1987; 5:219–24.

    Google Scholar 

  10. Treble NJ, Jensen F0, Banhier A, et al. Development of the hip in multiple epiphyseal dysplasia. Natural history and susceptibility to premature osteoarthritis. J Bone Joint Surg 1990; 72B;1061–4.

    Google Scholar 

  11. Cole WG. Abnormal skeletal growth in Kniest dysplasia caused by type I collagen mutations. Clin Orthop 1997; 341:162–9.

    PubMed  Google Scholar 

  12. Cordes S, Dickens DR, Cole WG. Correction of coxa vara in childhood. The use of Pauwel’s Y-shaped osteotomy. J Bone Joint Surg 1991; 73B:3–6.

    Google Scholar 

  13. Chan D, Cole WG, Rogers JG, Bateman JF. Type X collagen multimer assembly in vitro is prevented by a Gly618 to Val Mutation in the alpha 1 (X)NC1 domain resulting in Schmid metaphyseal chondrodysplasia. J Biol Chem 1995; 270:45558–62.

    Article  Google Scholar 

  14. Porter DE, Lonie L, Fraser M, et al. Severity of disease and risk of malignant change in hereditary multiple exostoses. J Bone Joint Surg 2004; 86B:1041–6.

    Article  Google Scholar 

  15. Trevor D. Tarso-epiphyseal aclasis. J Bone Joint Surg 1950; 32B:204–13.

    Google Scholar 

  16. Wenstrup RJ, Langland UT, Willing MC, et al. A splice-junction mutation in the region of COL5a that codes for the carboxyl propeptide of pro alpha 1(V) chains results in the gravis form of the Ehlers—Danlos syndrome (type I). Hum Mol Genetics 1996; 5:1733–6.

    Article  CAS  Google Scholar 

  17. Michalickova K, Susic M, Willing MC, et al. Mutations of f alpha2(V) chain of type V collagen impair matrix assembly and produce Ehlers—Danlos syndrome type I. Hum Mol Genetics 1998; 7:249–5.

    Article  CAS  Google Scholar 

  18. McOromy J, Wieksberg P, Thorner P, Cole WG. Abnormal extracellular matrix in Ehlers—Danlos syndrome type IV due to the Substitution of Glycine 934 by glutamic acid in the triple helical domain of type Ill collagen. Clin Genetics 1996; 50:442–5.

    Google Scholar 

  19. Giunta C, Superti-Furga A, Spranger S, et al. Ehlers-Danlos syndrome type VII: clinical features and molecular defects. J Bone Joint Surg 1999; 81A:225–38.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London Limited

About this chapter

Cite this chapter

Cole, W.G. (2010). Bone, Cartilage, and Fibrous Tissue Disorders. In: Benson, M., Fixsen, J., Macnicol, M., Parsch, K. (eds) Children's Orthopaedics and Fractures. Springer, London. https://doi.org/10.1007/978-1-84882-611-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-611-3_7

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-610-6

  • Online ISBN: 978-1-84882-611-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics