Skip to main content

Growth and Its Variants

  • Chapter
  • First Online:
Children's Orthopaedics and Fractures
  • 2743 Accesses

Abstract

Growth of the body (somatic growth) and of the individual skeletal elements is a phenomenally complex process. Huge advances have been made in recent years in the understanding of how the classical endocrine pathways, neural mechanisms, and local growth factors interrelate, but there are still large gaps in our knowledge. Skeletal growth determines body proportions and height and therefore has been the subject of intense investigation. It must be remembered that the mechanisms influencing overall growth also control the growth of individual organs, nerves, vessels, and muscles, but this discussion will concentrate on somatic growth and skeletal development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Cloth bound cover Book
USD 169.99
Price excludes VAT (USA)
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zguricas J, Bakker WF, Heus H, et al. Genetics of limb development and congenital hand malformations. Plast Reconst Surg 1998;101(4):1126–1135.

    Article  PubMed  CAS  Google Scholar 

  2. Hensinger R. Standards in Pediatric Orthopedics. Tables, Charts and Graphs Illustrating Growth. New York: Raven Press; 1986.

    Google Scholar 

  3. Manouvrier-Hanu S, Holder-Espinasse M, Lyonnet S. Genetics of limb anomalies in humans. Trends Genetics 1999;15(10):409–417.

    Article  CAS  Google Scholar 

  4. Tuan RS. Biology of developmental and regenerative skeletogenesis. Clin Orthop Rel Res 2004;(427 Suppl):S105–S117.

    Google Scholar 

  5. Currey J, Butler G. The mechanical properties of bone tissue in children. J Bone Joint Surg Am 1975;57-A(6):810–814.

    Google Scholar 

  6. Tiosano D, Hochberg Z. Bone and cartilage growth and metabolism. In: Kelnar C, Savage M, Saenger P, Cowell C, eds. Growth Disorders, 2nd ed. London: Hodder Arnold; 2007:25–47.

    Google Scholar 

  7. Preece M, Cameron N. Historical background and worldwide perspectives. In: Kelnar C, Savage M, Saenger P, Cowell C, eds. Growth Disorders, 2nd ed. London: Hodder Arnold; 2007:1–12.

    Google Scholar 

  8. Holly J. Peripheral hormone action. In: Kelnar C, Savage M, Saenger P, Cowell C, eds. Growth Disorders, 2nd ed. London: Hodder Arnold; 2007:114–126.

    Google Scholar 

  9. Drake A, Kelnar C. Growth in infancy and childhood. In: Kelnar C, Savage M, Saenger P, Cowell C, eds. Growth Disorders, 2nd ed. London: Hodder Arnold; 2007:132–149.

    Google Scholar 

  10. Johnston L. Normal fetal growth. In: Kelnar C, Savage M, Saenger P, Cowell C, eds. Growth Disorders, 2nd ed. London: Hodder Arnold; 2007:127–131.

    Google Scholar 

  11. Buckler J. Growth at adolescence. In: Kelnar C, Savage M, Saenger P, Cowell C, eds. Growth Disorders, 2nd ed. London: Hodder Arnold; 2007:150–164.

    Google Scholar 

  12. Wales J. Practical auxology and skeletal maturation. In: Kelnar C, Savage M, Saenger P, Cowell C, eds. Growth Disorders, 2nd ed. Hodder Arnold; 2007:208–218.

    Google Scholar 

  13. Moseley C. A straight line graph for leg length discrepancies. Clin Orthop Rel Res 1977;136:33–40.

    Google Scholar 

  14. Paley D, Bhave A, Herzenberg J, Bowen J. Multiplier method for predicting limb-length discrepancy. J Bone Joint Surg Am 2000;82-A(10):1432–1446.

    PubMed  CAS  Google Scholar 

  15. Eastwood D, Cole W. A graphic method for timing the correction of leg-length discrepancy. J Bone Joint Surg Br 1995;77-B:743–747.

    Google Scholar 

  16. Kusumi K, Turnpenny PD. Formation errors of the vertebral column. J Bone Joint Surg Am 2007;89(Suppl 1):64–71.

    Article  PubMed  Google Scholar 

  17. Sarwark J, Aubin CE. Growth considerations of the immature spine. J Bone Joint Surg Am 2007;89(Suppl 1):8–13.

    Article  PubMed  Google Scholar 

  18. Labrom RD. Growth and maturation of the spine from birth to adolescence. J Bone Joint Surg Am 2007;89-A(Suppl 1):3–7.

    Article  Google Scholar 

  19. Sanders JO. Maturity indicators in spinal deformity. J Bone Joint Surg Am 2007;89-A(Suppl 1):14–20.

    Article  Google Scholar 

  20. Charles YP, Dimeglio A, Canavese F, Daures J. Skeletal age assessment from the olecranon for idiopathic scoliosis at Risser grade 0. J Bone Joint Surg Am 2007;89(12):2737–2744.

    Article  PubMed  Google Scholar 

  21. Dimeglio A, Charles YP, Daures J, et al. Accuracy of the Sauvegrain method in determining skeletal age during puberty. J Bone Joint Surg Am 2005;87(8):1689–1696.

    Article  PubMed  Google Scholar 

  22. Frankenburg W, Dodds J. The Denver developmental screening test. J Pediatr 1967;71:181–191.

    Article  PubMed  CAS  Google Scholar 

  23. Sutherland DH, Olshen R, Cooper L, Woo SL. The development of mature gait. J Bone Joint Surg Am 1980;62(3):336–353.

    PubMed  CAS  Google Scholar 

  24. Staheli L, Corbett M, Wyss C, King H. Lower-extremity rotational problems in childhood. J Bone and Joint Surg Am 1985;67-A(1):39–47.

    Google Scholar 

  25. Lievense A, Bierma-Zeinstra S, Verhagen A, et al. Influence of hip dysplasia on the development of osteoarthritis of the hip. Ann Rheum Dis 2004;63(6):621–626.

    Article  PubMed  CAS  Google Scholar 

  26. Terjesen T, Benum P, Anda S, Svenningsen S. Increased femoral anteversion and osteoarthritis of the hip joint. Acta Orthop Scand 1982;53(4):571–575.

    Article  PubMed  CAS  Google Scholar 

  27. Salenius P, Vankka E. The development of the tibiofemoral angle in children. J Bone Joint Surg Am 1975;57-A(2):259–261.

    Google Scholar 

  28. Bowen RE, Dorey FJ, Moseley CF. Relative tibial and femoral varus as a predictor of progression of varus deformities of the lower limbs in young children. J Pediatr Orthop 2002;22(1):105–111.

    PubMed  Google Scholar 

  29. Davids JR, Blackhurst DW, Allen BL Jr. Radiographic evaluation of bowed legs in children. J Pediatr Orthop 2001;21(2):257–263.

    PubMed  CAS  Google Scholar 

  30. Levine AM, Drennan JC. Physiological bowing and tibia vara. the metaphyseal–diaphyseal angle in the measurement of bowleg deformities. J Bone Joint Surg Am 1982;64(8):1158–1163.

    PubMed  CAS  Google Scholar 

  31. McCarthy JJ, Betz RR, Kim A, et al. Early radiographic differentiation of infantile tibia vara from physiologic bowing using the femoral–tibial ratio. J Pediatr Orthop 2001;21(4):545–548.

    PubMed  CAS  Google Scholar 

  32. Feldman M, Schoenecker P. Use of the metaphyseal-diaphyseal angle in the evaluation of bowed legs. J Bone and Joint Surg Am 1993;75-A(11):1602–1609.

    Google Scholar 

  33. Shinohara Y, Kamegaya M, Kuniyoshi K, Moriya H. Natural history of infantile tibia vara. J Bone Joint Surg Br 2002;84(2):263–268.

    Article  PubMed  CAS  Google Scholar 

  34. Staheli L, Chew D, Corbett M. The longitudinal arch. J Bone Joint Surg Am 1987;69-A(3):426–428.

    Google Scholar 

  35. Widhe T. Foot deformities at birth: A longitudinal prospective study over a 16 year period. J Pediatr Orthop 1997;17:20–24.

    PubMed  CAS  Google Scholar 

  36. Mosca V. Flexible flatfoot and skewfoot. J Bone Joint Surg Am 1995;77-A(12):1937–1945.

    Google Scholar 

  37. Simkin A, Leichter I, Giladi M, et al. Combined effect of foot arch structure and an orthotic device on stress fractures. Foot Ankle 1989;10(1):25–29.

    PubMed  CAS  Google Scholar 

  38. Hetsroni I, Finestone A, Milgrom C, et al. A prospective biomechanical study of the association between foot pronation and the incidence of anterior knee pain among military recruits. J Bone Joint Surg Br 2006;88-B(7):905–908.

    Article  Google Scholar 

  39. Wenger D, Maudlin D, Speck G, et al. Corrective shoes and inserts as treatment for flexible flatfoot in infants and children. J Bone Joint Surg Am 1989; 71-A(6):800–810.

    Google Scholar 

  40. Gould N, Moreland M, Alvarez R, et al. Development of the child’s arch. Foot Ankle 1989;9(5):241–245.

    PubMed  CAS  Google Scholar 

  41. Driano A, Staheli L, Staheli L. Psychosocial development and corrective shoewear use in children. J Pediatr Orthop 1998;18(3):346–349.

    PubMed  CAS  Google Scholar 

  42. Grahame R, Hakim AJ. Hypermobility. Curr Opin Rheumatol 2008;20(1):106–110.

    Article  PubMed  Google Scholar 

  43. Grahame R. Joint hypermobility and genetic collagen disorders: Are they related? Arch Dis Child 1999;80(2):188–191.

    Article  PubMed  CAS  Google Scholar 

  44. Gardner-Medwin J, Galea P, Duncan R. Musculoskeletal and connective tissue disorders. In: Beattie J, Carachi R, eds. Practical Paediatric Problems—a Textbook for MRCPCH. London: Hodder Arnold; 2005:485–517.

    Google Scholar 

Download references

Acknowledgments

We acknowledge with grateful thanks to the staff of the Medical Illustration Department, Yorkhill; and to the Rowland family.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roderick D. Duncan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London Limited

About this chapter

Cite this chapter

Duncan, R.D. (2010). Growth and Its Variants. In: Benson, M., Fixsen, J., Macnicol, M., Parsch, K. (eds) Children's Orthopaedics and Fractures. Springer, London. https://doi.org/10.1007/978-1-84882-611-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-611-3_2

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-610-6

  • Online ISBN: 978-1-84882-611-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics