Skip to main content

Artificial Symbiosis in EcoBots

  • Chapter
Artificial Life Models in Hardware

Truly autonomous robotic systems will be required to abstract energy from the environment in order to function. Energetic autonomy refers to the ability of an agent, to maintain itself in a viable state for long periods of time. Its behaviour must be stable in order not to yield to an irrecoverable debt in any vital resource, i.e. it must not cross any of its lethal limits [1, 2]. With this in mind, our long-term goal is the creation of a robot, which can collect energy for itself. This energy must come from the robot's environment and must be sufficient to carry out tasks, which require more energy than that available at the start of the mission. In this respect our definition of an autonomous robot is more akin to Stuart Kauffman's definition of an autonomous agent, “a self-reproducing system able to perform at least one thermodynamic work cycle” [3] — but without the burden of self-reproduction!

Building automata is certainly not something new. The first recorded example of an automaton dates back to the first century A.D. when Heron of Alexandria constructed a self-moving cart driven by a counter weight attached to the wheel base [4]. In more recent times, there are of course, some real robots, which already comply with this definition. For example, robots such as NASA's ‘Spirit’ [5] employ solar panels to power their explorations of Mars and have demonstrated their impressive ability to be self-sustaining. However, there will be numerous domains in which solar energy will not be available such as in underwater environments, sewers or when constrained to operate only in the dark. We are, therefore, interested in a class of robot system, which demonstrates energetic autonomy by converting natural raw electron-rich organic substrate (such as plant or insect material) into power for essential elements of robotic behaviour including motion, sensing and computation. This requires an artificial digestion system and concomitant artificial metabolism or, as in the case of EcoBots-I and -II, a rapprochement between an engineered artefact and a biological system — the robot symbiot.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Holland, O.: Towards true autonomy. In Proceedings 29th Int. Symp. Robot. (ISR98), Birmingham, UK, 84–87 (1998)

    Google Scholar 

  2. McFarland, D., Spier, E.: Basic cycles, utility and opportunism in self-sufficient robots. Robot. Autonom. Sys. 20, 179–190 (1997)

    Article  Google Scholar 

  3. Kaufmann, S.: Investigations. Oxford University Press: New York, USA (2000)

    Google Scholar 

  4. Webb, B.: The first mobile robot. In Proceedings of TIMR 99, Towards Intelligent Mobile Robots. Bristol, UK (1999)

    Google Scholar 

  5. Squyres, W., S., Arvidson, R., E., Bell III, J., F., Bruckner, J., Cabrol, N., A., Calvin, W. et al.: The Spirit Rover's Athena Science Investigation at Gusev Crater, Mars. Science 305, 794–799 (2004)

    Article  Google Scholar 

  6. Greenman G., Kelly I., Kendall K., McFarland, D., Melhuish, C.: Towards robot autonomy in the natural world: A robot in predator's clothing. Mechatronics 13, 195–228 (2003)

    Article  Google Scholar 

  7. Kelly, I., Holland, O., Melhuish, C.:Slugbot: A Robotic Predator in the Natural World. In Proceedings 5th Int. Symp. Artif. Life Robot. (AROB 5th '00) Human Welfare Artif. Liferobot., Oita, Japan, pp. 470–475 (2000)

    Google Scholar 

  8. Kelly I., Melhuish C.: Slugbot: A Robot Predator. In Proceedings Euro. Conf. Artif. Life (ECAL), Prague, Czech Republic, pp. 519–528 (2001)

    Google Scholar 

  9. Kubo, M., Melhuish, C.: Robot Trophallaxis: Managing Energy Autonomy in Multiple Robots. In Proceedings Towards Autonom. Robot. Sys. (TAROS 04), Colchester, UK, pp. 77–84 (2004)

    Google Scholar 

  10. Melhuish, C., Kubo, M.: Collective Energy Distribution: Maintaining the Energy balance in Distributed Autonomous Robots. In Proceedings 7th Int. Symp. Distrib. Autonom. Robot. Sys., Toulouse, France, pp. 261–270 (2004)

    Google Scholar 

  11. Prescott, L. M., Harley, J.P., Klein, D. A.: Microbiology. Brown, London (1995)

    Google Scholar 

  12. Boopathy, R.: Methanogenic transformation of methylfurfural compounds to furfural. Appl. Environ. Microbiol. 62, 3483–3485 (1996)

    Google Scholar 

  13. Lomans, B. P., Op den Camp, H. J. M., Pol, A., van der Drift, C., Vogels, G. D.: Role of methanogens and other bacteria in degradation of dimethyl sulfide and methanethiol in anoxic freshwater sediments. Appl. Environ. Microbiol. 65, 2116–2121 (1999)

    Google Scholar 

  14. Watanabe K, Kodama Y, Hamamura N, Kaku N.: Diversity, abundance, and activity of ar-chaeal populations in oil-contaminated groundwater accumulated at the bottom of an underground crude oil storage cavity. Appl Environ Microbiol. 68, 3899–3907 (2002)

    Article  Google Scholar 

  15. Wilkinson, S.: ‘Gastronome’ — A Pioneering Food Powered Mobile Robot. In Proceedings 8th IASTED, International Conference on Robotics and Applications, Paper No. 318–037, Honolulu, Hawaii, USA (2000)

    Google Scholar 

  16. Wilkinson, S.: Hungry for success — future directions in gastrobotics research. Industrial Robot 28(3), 213–219 (2001)

    Article  MathSciNet  Google Scholar 

  17. Potter, M. C.: Electrical effects accompanying the decomposition of organic compounds. Proc. R. Soc. 84 B, 260–276 (1912)

    Google Scholar 

  18. Ieropoulos, I., Greenman, J., Melhuish C., Hart J.: Comparison of three different types of microbial fuel cell. Enz. Microb. Technol. 37, 238–245 (2005)

    Google Scholar 

  19. Bond, D. R., Holmes, D. E., Tender L. M., Lovley, D. R.: Electrode-reducing microorganisms that harvest energy from marine sediments. Science 295, 483–485 (2002)

    Article  Google Scholar 

  20. Habermann, W., Pommer, E.-H.: Biological fuel cells with sulphide storage capacity. Appl. Microbiol. Biotechnol. 35, 128–133 (1991)

    Article  Google Scholar 

  21. Hernandez, M. E., Newman D. K.: Extracellular electron transfer. Cell. Mol. Life. Sci. 58: 1562–1571 (2001)

    Article  Google Scholar 

  22. Kim, B. H.: Development of a Mediator-less Microbial Fuel Cell. In Abst. 98th Gener. Meet. Amer. Soc. Microbiol. Washington, D.C., USA, Paper # 0-12, Session 116-0 (1998)

    Google Scholar 

  23. Rabaey, K., Boon, N., Siciliano, D., Verhaege, M., Verstraete, W.: Biofuel cells select for microbial consortia that self-mediate electron transfer. App. Environ. Microbiol. 70, 5373–5382 (2004)

    Article  Google Scholar 

  24. Sigfridsson, K.: Plastocyanine, an electron-transfer protein. Photosynth. Res. 57, 1–28 (1998)

    Article  Google Scholar 

  25. Bond, D. R., Lovley, D. R.: Electricity Production by Geobacter sulfurreducens Attached to Electrodes. Appl. Environ. Microbiol. 69, 1548–1555 (2003)

    Article  Google Scholar 

  26. Caccavo, Jr. et al.: Geobacter sulfurreducens sp. nov., a Hydrogen- and Acetate- Oxidising Dissimilatory Metal-Reducing Microorganism. Appl. Environ. Microbiol. 60(10): 3752–3759 (1994)

    Google Scholar 

  27. Ieropoulos, I., Melhuish, C., Greenman, J., Hart, J.: Energy accumulation and improved performance in microbial fuel cells. Power Sources 145, 353–356 (2005)

    Article  Google Scholar 

  28. Liu, H., Ramnarayanan, R., Logan, B. E.: Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environ. Sci. Technol. 38, 2281–2285 (2004)

    Article  Google Scholar 

  29. Min, B., Logan, B. E.: Continuous Electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell. Environ. Sci. Technol. 38(21), 5809–5814 (2004)

    Article  Google Scholar 

  30. Coren, S.: The left-hander syndrome: The causes and consequences of left-handedness. Free, New York, NY, (1992)

    Google Scholar 

  31. Bennetto, H.P.: Electricity generation by microorganisms. Biotech. Ed. 1, 163–168 (1990)

    Google Scholar 

  32. Kester, D., Duedall, I., Connors, D., Pytkowicz, R.: Preparation of artificial seawater. Limnol. Oceanogr. 12, 176–179 (1967)

    Article  Google Scholar 

  33. Weiser, J., I., Porth, A., Mertens, D., Karasov, W. H.: Digestion of chitin by Northern Bob-whites and American Robins. Condor 99, 554–556 (1997)

    Article  Google Scholar 

  34. DeFoliart, G. R.: Insects as human food: Gene DeFoliart discusses some nutritional and economic aspects. Crop Prot. 11, 395–399 (1992)

    Article  Google Scholar 

  35. Ashby, W.R.: Design for a Brain. Chapman and Hall, London, UK (1952)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag London Limited

About this chapter

Cite this chapter

Ieropoulos, I.A., Greenman, J., Melhuish, C., Horsfield, I. (2009). Artificial Symbiosis in EcoBots. In: Adamatzky, A., Komosinski, M. (eds) Artificial Life Models in Hardware. Springer, London. https://doi.org/10.1007/978-1-84882-530-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-530-7_9

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-529-1

  • Online ISBN: 978-1-84882-530-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics