Skip to main content

DISSECT: Data-Intensive Socially Similar Evolving Community Tracker

  • Chapter
  • First Online:
Computational Social Network Analysis

Part of the book series: Computer Communications and Networks ((CCN))

Abstract

This chapter examines the problem of tracking community in social networks inferred from online interactions by tracking evolution of known subgroups over time. Finding subgroups within social networks is important for understanding and possibly influencing the formation and evolution of online communities. A variety of approaches have been suggested to address this problem and the corresponding research literature on centrality, clustering, and optimization methods for finding subgroupings is reviewed. This review will include a critical analysis of the limitations of past approaches. The focus of the chapter will then turn to novel methods for tracking online community interaction. First, the method proposed by Chin and Chignell called SCAN will be briefly introduced, where a combination of heuristic methods is used to identify subgroups in a manner that can potentially scale up to very large social networks. Then, we present the DISSECT method where multiple known subgroups within a social network are tracked in terms of similarity-based cohesiveness over time. The DISSECT method relies on cluster analysis of snapshots of network activity at different points in time followed by similarity analysis of subgroup evolution over successive time periods. The DISSECT method can be supplemented with behavioral measures of sense of community where administration of a questionnaire is feasible. Finally, we conclude the chapter with a discussion on possible applications and use of the DISSECT method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adar E, Li Z, Adamic LA, Lukose RM (May 2004) Implicit structure and the dynamics of blogspace. In: Workshop on the weblogging ecosystem, 13th international World Wide Web conference

    Google Scholar 

  2. Alba RD (2003) A graph-theoretic definition of a sociometric clique. J Math Sociol 3:113–126

    MathSciNet  Google Scholar 

  3. Anderson CJ, Wasserman S, Faust K (1997) Building stochastic blockmodels. Social Networks 14:137–161

    Article  Google Scholar 

  4. Backstrom L (2006) Group formation in large social networks: membership, growth, and evolution. In: KDD 06: Proceedings of the 12th ACM SIGKDD international conference on knowledge discovery and data mining, ACM Press, pp 44–54

    Google Scholar 

  5. Balasundaram B, Butenko S, Hicks I, Sachdeva S (2007) Clique relaxations in social network analysis: the maximum k-plex problem. Technical report, Texas A and M Engineering

    Google Scholar 

  6. Bass LA, Stein CH (1997) Comparing the structure and stability of network ties using the social support questionnaire and the social network list. J Soc Pers Relat 14:123–132

    Google Scholar 

  7. Bird C (2006) Community structure in oss projects. Technical report, University of California, Davis

    Google Scholar 

  8. Blanchard AL, Markus ML (2004) The experienced “sense” of a virtual community: characteristics and processes. SIGMIS Database 35(1):64–79

    Google Scholar 

  9. Borgatti SP, Everett GM, Freeman CL (2002) Ucinet for windows: software for social network analysis. Analytic Technologies, Harvard, USA

    Google Scholar 

  10. Brin S, Page L (1998) The anatomy of a large-scale hypertextual web search engine. In: WWW7: Proceedings of the 7th international conference on World Wide Web 7. Elsevier Science BV, Amsterdam, the Netherlands, pp 107–117

    Google Scholar 

  11. Burt R (1982) Toward a structural theory of action: network models of social structure, perception, and action. Academic, New York

    Book  Google Scholar 

  12. Burt R (1984) Network items and the general social survey. Social Networks 6:293–339

    Article  Google Scholar 

  13. Campbell KE, Barret AL (1991) Name generators in surveys of personal networks. Social Networks 13:203–221

    Article  Google Scholar 

  14. Carrington PJ, Scott J, Wasserman S (2006) Models and methods in social network analysis. Cambridge University Press, New York, NY, USA

    Google Scholar 

  15. Cervini AL (2003) Network connections: An analysis of social software that turns online introductions into offline interactions. Master’s thesis, New York University, New York, NY

    Google Scholar 

  16. Chavis DM (2008) Sense of community index. http://www.capablecommunity.com/pubs/Sense\%20of\%20Community\%20Index.pdf. Accessed 30 September 2008

  17. Chavis DM, Wandersman A (1990) Sense of community in the urban environment: a catalyst for participation and community development. Am J Commun Psychol 18(1):55–81

    Google Scholar 

  18. Chin A (January 2009) Social cohesion analysis of networks: a method for finding cohesive subgroups in social hypertext. PhD thesis, University of Toronto

    Google Scholar 

  19. Chin A, Chignell M (2006) A social hypertext model for finding community in blogs. In: Proceedings of the 17th international ACM conference on hypertext and hypermedia: tools for supporting social structures. ACM, Odense, Denmark, pp 11–22

    Google Scholar 

  20. Chin A, Chignell M (2007) Identifying communities in blogs: roles for social network analysis and survey instruments. Int J Web Based Commun 3(3):345–363

    Google Scholar 

  21. Chin A, Chignell M (2007) Identifying subcommunities using cohesive subgroups in social hypertext. In: HT ’07: Proceedings of the 18th conference on hypertext and hypermedia. ACM, New York, NY, USA, pp 175–178

    Google Scholar 

  22. Chin A, Chignell M (2008) Automatic detection of cohesive subgroups within social hypertext: A heuristic approach. New Rev Hypermed Multimed 14(1):121–143

    Google Scholar 

  23. Chin A, Keelan J, Pavri-Garcia V, Tomlinson G, Wilson K, Chignell M (2009) Automated delineation of subgroups in web video: A medical activism case study. Journal of Computer-Mediated Communication. In Press

    Google Scholar 

  24. Clauset A (2005) Finding local community structure in networks. Phys Rev E 72:026132

    Google Scholar 

  25. Costenbader E, Thomas WV (October 2003) The stability of centrality measures when networks are sampled. Social Networks 25:283–307

    Article  Google Scholar 

  26. Crucitti P, Latora V, Porta S (2006) Centrality measures in spatial networks of urban streets. Phys Rev E 73:036125

    Google Scholar 

  27. Danon L, Duch J, Diaz-Guilera A, Arenas A (2005) Comparing community structure identification. J Stat Mech Theor Exp: P09008

    Google Scholar 

  28. de Nooy W, Mrvar A, Batagelj V (2005) Exploratory social network analysis with Pajek. Cambridge University Press, New York, USA

    Book  Google Scholar 

  29. Dixon J (1981) Towards an understanding of the implications of boundary changes – with emphasis on community of interest, draft report to the rural adjustment unit. Technical report, University of New England, Armidale

    Google Scholar 

  30. Donetti L, Munoz AM (2004) Detecting network communities: a new systematic and efficient algorithm. J Stat Mech Theor Exp 2004(10):P10012

    Google Scholar 

  31. Driskell BR, Lyon L (2002) Are virtual communities true communities? Examining the environments and elements of community. City and Community 1(4):373–390

    Article  Google Scholar 

  32. Du N, Wu B, Pei X, Wang B, Xu L (2007) Community detection in large-scale social networks. In WebKDD/SNA-KDD ’07: Proceedings of the 9th WebKDD and 1st SNA-KDD 2007 workshop on Web mining and social network analysis. ACM, New York, NY, USA, pp 16–25

    Google Scholar 

  33. Duch J, Arenas A (2005) Community detection in complex networks using extremal optimization. Phys Rev E (Stat Nonlinear Soft Matter Phys) 72(2):027104

    Google Scholar 

  34. Dwyer T, Hong HS, Koschutzki D, Schreiber F, Xu K (2006) Visual analysis of network centralities. In: APVis ’06: Proceedings of the 2006 Asia-Pacific symposium on information visualisation. Australian Computer Society, Darlinghurst, Australia, pp 189–197

    Google Scholar 

  35. Elmore LK, Richman BM (March 2001) Euclidean distance as a similarity metric for principal component analysis. Month Weather Rev 129(3):540–549

    Google Scholar 

  36. Erickson T (1996) The world-wide-web as social hypertext. Commun ACM 39(1):15–17

    Google Scholar 

  37. Estrada E, Rodriguez-Velazquez AJ (2005) Subgraph centrality in complex networks. Phys Rev E 71:056103

    MathSciNet  Google Scholar 

  38. Etzioni A, Etzioni O (2001) Can virtual communities be real? In: Etzioni A (ed) The Monochrome Society, Princeton University Press, Princeton, pp 77–101

    Google Scholar 

  39. Falkowski T, Bartelheimer J, Spiliopoulou M (2006) Community dynamics mining. In: Proceedings of 14th European conference on information systems (ECIS 2006). Gteborg, Sweden

    Google Scholar 

  40. Fisher D (2005) Using egocentric networks to understand communication. IEEE Internet Comput 9(5):20–28

    Google Scholar 

  41. Flake WG, Lawrence S, Giles LC, Coetzee MF (2002) Self-organization and identification of web communities. IEEE Computer 35(3):66–71

    Google Scholar 

  42. Fortunato S, Latora V, Marchiori M (2004) Method to find community structures based on information centrality. Phys Rev E (Stat Nonlinear, Soft Matter Phys) 70(5):056104

    Google Scholar 

  43. Frank AK (1997) Identifying cohesive subgroups. Social Networks 17(1):27–56

    Article  Google Scholar 

  44. Freeman CL (1978) Centrality in social networks: Conceptual clarification. Social Networks 1:215–239

    Article  Google Scholar 

  45. Frivolt G, Bielikov M (2005) An approach for community cutting. In: Svatek V, Snasel V (eds) RAWS 2005: Proceedings of the 1st International workshop on representation and analysis of Web space, Prague-Tocna, Czech Republic, pp 49–54

    Google Scholar 

  46. Garton L, Haythornthwaite C, Wellman B (1997) Studying online social networks. J Comput Mediated Commun 3(1):1–30

    Google Scholar 

  47. Girvan M, Newman EJM (2002) Community structure in social and biological networks. Proc Natl Acad Sci USA 99:7821

    MATH  MathSciNet  Google Scholar 

  48. Gloor AP (2005) Capturing team dynamics through temporal social surfaces. In: Proceedings of the 9th international conference on information visualisation (InfoVis 2005). IEEE, pp 939–944

    Google Scholar 

  49. Gloor AP, Laubacher R, Dynes BCS, Zhao Y (2003) Visualization of communication patterns in collaborative innovation networks – analysis of some w3c working groups. In: CIKM ’03: Proceedings of the 12th international conference on information and knowledge management, ACM Press, New York, NY, USA, pp 56–60

    Google Scholar 

  50. Gómez V, Kaltenbrunner A, López V (2008) Statistical analysis of the social network and discussion threads in slashdot. In: WWW ’08: Proceedings of the 17th international conference on World Wide Web. ACM, New York, NY, USA, pp 645–654

    Google Scholar 

  51. Gregson AMR (1975) Psychometrics of similarity. Academic, NY, USA

    Google Scholar 

  52. Gruzd A, Haythornthwaite C (2007) A noun phrase analysis tool for mining online community. In: Proceedings of the 3rd international conference oncommunities and technologies, East Lansing, Michigan, USA, pp 67–86

    Google Scholar 

  53. Gruzd A, Haythornthwaite C (2008) Automated discovery and analysis of social networks from threaded discussions. Paper presented at the International Network of Social Network Analysis, St. Pete Beach, FL, USA

    Google Scholar 

  54. Hanneman AR, Riddle M (2005) Introduction to social network methods (online textbook). University of California, Riverside, CA

    Google Scholar 

  55. Hartigan J (1975) Clustering algorithms. Wiley, New York, NY, USA

    MATH  Google Scholar 

  56. Hirsch JB (1979) Psychological dimensions of social networks: A multimethod analysis. Am J Commun Psychol 7(3):263–277

    Google Scholar 

  57. Hoskinson A (2005) Creating the ultimate research assistant. Computer 38(11):97–99

    Article  Google Scholar 

  58. Hubert JL, Schultz J (1976) Quadratic assignment as a general data analysis strategy. Brit J Math Stat Psychol 29:190–241

    MATH  MathSciNet  Google Scholar 

  59. Jaccard P (1901) Distribution de la flore alpine dans le bassin des dranses et dans quelques rgions voisines. Bulletin del la Socit Vaudoise des Sciences Naturellese, 37:241–272

    Google Scholar 

  60. Johnson CS (1967) Hierarchical clustering schemes.Psychometrika, 32

    Google Scholar 

  61. Jones Q (1997) Virtual-communities, virtual settlements and cyber-archaeology: A theoretical outline. J Comput Supported Coop Work 3(3)

    Google Scholar 

  62. Jung Y, Park H, Du DZ, Drake LB (2003) A decision criterion for the optimal number of clusters in hierarchical clustering. J Global Optim 25(1):91–111

    MathSciNet  Google Scholar 

  63. Keelan J, Pavri-Garcia V, Tomlinson G, Wilson K (2007) Youtube as a source of information on immunization: a content analysis. JAMA: J Am Med Assoc 298(21):2482–2484

    Article  Google Scholar 

  64. Kleinberg J (2002) Bursty and hierarchical structure in streams. In: KDD ’02: Proceedings of the 8th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, New York, NY, USA, pp 91–101

    Google Scholar 

  65. Kleinberg MJ (1999) Authoritative sources in a hyperlinked environment. J ACM 46(5): 604–632

    MATH  MathSciNet  Google Scholar 

  66. Koschtzki D, Schreiber F (2004) Comparison of centralities for biological networks.In: Giegerich R, Stoye J (eds) Proceedings of the German conference on bioinformatics (GCB’04), Bielefield, Germany, pp 199–206

    Google Scholar 

  67. Kumar R, Novak J, Raghavan P, Tomkins A (2003) On the bursty evolution of blogspace. In: WWW ’03: Proceedings of the 12th international conference on World Wide Web. ACM, New York, NY, USA, pp 568–576

    Google Scholar 

  68. Kumar R, Novak J, Raghavan P, Tomkins A (2004) Structure and evolution of blogspace. Commun ACM 47(12):35–39

    Google Scholar 

  69. Kumar R, Raghavan P, Rajagopalan S, Tomkins A (1999) Trawling the web for emerging cyber-communities. Computer Networks 31(11–16), pp 1481–1493

    Article  Google Scholar 

  70. Kurdia A, Daescu O, Ammann L, Kakhniashvili D, Goodman RS (November 2007) Centrality measures for the human red blood cell interactome. Engineering in Medicine and Biology Workshop. IEEE, Dallas, pp 98–101

    Google Scholar 

  71. Leskovec J, Lang JK, Dasgupta A, Mahoney WM (2008) Statistical properties of community structure in large social and information networks. In: WWW ’08: Proceedings of the 17th international conference on World Wide Web. ACM, New York, NY, USA, pp 695–704

    Google Scholar 

  72. Leydesdorff L, Schank T, Scharnhorst A, de Nooy W (2008) Animating the development of social networks over time using a dynamic extension of multidimensional scaling

    Google Scholar 

  73. Li X, Liu B, Yu SP (2006) Mining community structure of named entities from web pages and blogs. In: AAAI Spring Symposium Series. American Association for Artificial Intelligence

    Google Scholar 

  74. Lin RY, Chi Y, Zhu S, Sundaram H, Tseng LB (2008) Facetnet: a framework for analyzing communities and their evolutions in dynamic networks. In: WWW ’08: Proceedings of the 17th international conference on World Wide Web. ACM, New York, NY, USA, pp 685–694

    Google Scholar 

  75. Ma W-H, Zeng PA (2003) The connectivity structure, giant strong component and centrality of metabolic networks. Bioinformatics 19(11):1423–1430

    Article  Google Scholar 

  76. Marlow C (2004) Audience, structure and authority in the weblog community. In: International communication association conference, New Orleans, LA

    Google Scholar 

  77. McMillan WD, Chavis DM (1986) Sense of community: a definition and theory. J Commun Psychol 14(1):6–23

    Google Scholar 

  78. Memon N, Harkiolakis N, Hicks LD (2008) Detecting high-value individuals in covert networks: 7/7 London bombing case study. In Proceedings of the 2008 IEEE/ACS International Conference on computer systems and applications. IEEE Computer Society, Washington DC, USA, 4–31 April 2008, pp 206–215

    Google Scholar 

  79. Memon N, Larsen LH, Hicks LD, Harkiolakis N (2008) Detecting hidden hierarchy in terrorist networks: Some case studies. Lect Notes Comput Sci 5075:477–489

    Google Scholar 

  80. Mizruchi SM, Mariolis P, Schwartz M, Mintz B (1986) Techniques for disaggregating centrality scores in social networks. Sociol Methodol 16:26–48

    Google Scholar 

  81. Moody J, McFarland AD, Bender-deMoll S (2005) Visualizing network dynamics. Am J Sociol: Jan 2005

    Google Scholar 

  82. Mukherjee M, Holder LB (2004) Graph-based data mining on social networks. In: Proceedings of the 10th ACM SIG conference on knowledge discovery and data mining, ACM, Seattle, USA, pp 1–10

    Google Scholar 

  83. Neustaedter C, Brush AJ, Smith AM, Fisher D (2005) The social network and relationship finder: Social sorting for email triage. In: Proceedings of the 2nd conference on E-mail and anti-spam (CEAS 2005), California, USA

    Google Scholar 

  84. Newman EJM (2006) Modularity and community structure in networks. Proc Nat Acad Sci 103(23):8577–8582

    Google Scholar 

  85. Newman EJM, Girvan M (2004) Finding and evaluating community structure in networks. Phys Rev E 69:026113

    Google Scholar 

  86. O’Reilly T (2005) What is web 2.0? http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20. Accessed 30 September 2008

  87. Orford DJ (1976) Implementation of criteria for partitioning a dendrogram. Math Geol 8(1):75–84

    Google Scholar 

  88. Paolillo CJ, Wright E (2004) The challenges of foaf characterization. http://stderr.org/~elw/foaf/. Accessed 30 September 2008

  89. Paolillo CJ, Wright E (2005) Social network analysis on the semantic web: Techniques and challenges for visualizing foaf. http://www.blogninja.com/vsw-draft-paolillo-wright-foaf.pdf. Accessed 30 September 2008

    Google Scholar 

  90. Piper EW, Marrache M, Lacroix R, Richardsen MA, Jones BD (1983) Cohesion as a basic bond in groups. Hum Relat 36(2):93–108

    Google Scholar 

  91. Radicchi F, Castellano C, Cecconi F, Loreto V, Parisi D (2004) Defining and identifying communities in networks. Proc Natl Acad Sci USA 101(9):2658–2663

    Google Scholar 

  92. Reffay C, Chanier T (2003) How social network analysis can help to measure cohesion in collaborative distance learning. In: Proceedings of computer supported collaborative learning 2003. Kluwer, ACM, Dordrecht, NL, pp 343–352

    Google Scholar 

  93. Rheingold H (1993) The virtual community: homesteading on the electronic frontier. Addison-Wesley, Toronto, ON, Canada

    Google Scholar 

  94. Ruan J, Zhang W An efficient spectral algorithm for network community discovery and its applications to biological and social networks. In: Seventh IEEE international conference on data mining (ICDM 2007), Omaha, Nebraska, USA, 28–31 October 2007, pp 643–648

    Google Scholar 

  95. Ruhnau B (October 2000) Eigenvector-centrality – a node-centrality? Social Networks 22(4):357–365

    Article  Google Scholar 

  96. Sarason GI, Levine HM, Basham BR, Sarason RB (1983) Assessing social support: the social support questionnaire. J Pers Social Psychol 44:127–139

    Google Scholar 

  97. Schaeffer ES (2007) Graph clustering. Comput Sci Rev 1(1):27–64

    MATH  MathSciNet  Google Scholar 

  98. Shi J, Malik J (2000) Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell 22(8):888–905

    Google Scholar 

  99. Snijders ABT, Nowicki K (1997) Estimation and prediction for stochastic block models for graphs with latent block structure. J Classif 14:75–100

    MATH  MathSciNet  Google Scholar 

  100. Snijders AB Tom, Christian EG Steglich, Schweinberger M (2007) Modeling the co-evolution of networks and behavior. In: Kees van Montfort, Han Oud, Albert Satorra (eds) Longitudinal models in the behavioral and related sciences, Routledge Academic, England, pp 41–71

    Google Scholar 

  101. Steinhaeuser K, Chawla VN (2008) Is modularity the answer to evaluating community structure in networks. In: International workshop and conference on network science (NetSci’08), Norwich Research Park, UK

    Google Scholar 

  102. Sterling S (2004) Aggregation techniques to characterize social networks. Master’s thesis, Air Force Institute of Technology. Ohio, USA

    Google Scholar 

  103. Tajfel H, Turner CJ (1986) The social identity theory of inter-group behavior. In: Worchel S, Austin LW (eds) Psychology of intergroup relations. Nelson-Hall, Chicago, USA

    Google Scholar 

  104. Tantipathananandh C, Berger-Wolf YT, Kempe D (2007) A framework for community identification in dynamic social networks. In: KDD ’07: Proceedings of the 13th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, New York, NY, USA, pp 717–726

    Google Scholar 

  105. Traud LA, Kelsic DE, Mucha JP, Porter AM (2009) Community structure in online collegiate social networks, American Physical Society, 2009 APS March Meeting, March 16–20, pp 1–38

    Google Scholar 

  106. Tremayne M, Zheng N, Lee KJ, Jeong J (2006) Issue publics on the web: Applying network theory to the war blogosphere. J Comput Mediated Commun 12(1), article 15. http://jcmc.indiana.edu/vol12/issue1/tremayne.html

    Google Scholar 

  107. Tversky A (1977) Features of similarity. Psychol Rev 84(4):327–352

    Google Scholar 

  108. Tyler RJ, Wilkinson MD, Huberman AB (2005) E-mail as spectroscopy: Automated discovery of community structure within organizations. Inform Soc 21(2):143–153

    Google Scholar 

  109. Uttal RW, Spillmann L, Sturzel F, Sekuler BA (2000) Motion and shape in common fate. Vision Res 40(3):301–310

    Google Scholar 

  110. van Duijn1 AJM, Vermunt KJ (2005) What is special about social network analysis? Methodology 2:2–6

    Google Scholar 

  111. Wang G, Shen Y, Ouyang M (2008) A vector partitioning approach to detecting community structure in complex networks. Comput Math Appl 55(12):2746–2752

    MATH  MathSciNet  Google Scholar 

  112. Wang H, Wang W, Yang J, Yu SP (2002) Clustering by pattern similarity in large data sets. In: SIGMOD ’02: Proceedings of the 2002 ACM SIGMOD international conference on management of data. ACM, New York, NY, USA, pp 394–405

    Google Scholar 

  113. Wasserman S, Faust K (1994) Social network analysis: methods and applications. Cambridge University Press, United Kingdom

    Book  Google Scholar 

  114. Wellman B (2003) Structural analysis: from method and metaphor to theory and substance. In: Wellman B, Berkowitz SD (eds) Social structures: a network approach, Cambridge University Press, UK, pp 19–61

    Google Scholar 

  115. Wellman B, Guilia M (1999) Net surfers don’t ride alone: virtual communities as communities. In: Wellman B (ed) Networks in the global village: life in contemporary communities, Westview Press, Colorado, US

    Google Scholar 

  116. Welser TH, Gleave E, Fisher D, Smith M (2007) Visualizing the signatures of social roles in online discussion groups. J Soc Struct 8, http://www.cmu.edu/joss/content/articles/volume8/Welser

    Google Scholar 

  117. Zahn TC (1971) Graph-theoretical methods for detecting and describing gestalt clusters. IEEE Trans Comput C-20(1):68–86

    Google Scholar 

  118. Zhao Y, Karypis G (2002) Evaluation of hierarchical clustering algorithms for document datasets. In: CIKM ’02: Proceedings of the 11th international conference on information and knowledge management. ACM, New York, NY, USA, pp 515–524

    Google Scholar 

Download references

Acknowledgements

We would like to thank the TorCamp group for allowing us to use their Google Groups site for data analysis and the participants for completing the behavioral surveys. The authors would also like to thank Jennifer Keelan and Kumanan Wilson for providing us with the content analysis information from the YouTube vaccination videos shown in Table 4.1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alvin Chin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London Limited

About this chapter

Cite this chapter

Chin, A., Chignell, M. (2010). DISSECT: Data-Intensive Socially Similar Evolving Community Tracker. In: Abraham, A., Hassanien, AE., Sná¿el, V. (eds) Computational Social Network Analysis. Computer Communications and Networks. Springer, London. https://doi.org/10.1007/978-1-84882-229-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-229-0_4

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-228-3

  • Online ISBN: 978-1-84882-229-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics