Skip to main content

Sparse Representations for Pattern Classification using Learned Dictionaries

  • Conference paper
Research and Development in Intelligent Systems XXV (SGAI 2008)

Abstract

Sparse representations have been often used for inverse problems in signal and image processing. Furthermore, frameworks for signal classification using sparse and overcomplete representations have been developed. Data-dependent representations using learned dictionaries have been significant in applications such as feature extraction and denoising. In this paper, our goal is to perform pattern classification in a domain referred to as the data representation domain, where data from different classes are sparsely represented using an overcomplete dictionary. We propose a source model to characterize the data in each class and present an algorithm to infer the dictionary from the training data of all the classes. We estimate statistical templates in the data representation domain for each class of data, and perform classification using a likelihood measure. Simulation results show that, in the case of highly sparse signals, the proposed classifier provides a consistently good performance even under noisy conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aharon, M., Elad, M. and Bruckstein, A.: K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Transactions on Signal Processing. 54(11), 4311–4322 (2006).

    Article  Google Scholar 

  2. Aharon, M. and Elad, M.: Image denoising via sparse and redundant representations over learned dictionaries. IEEE Transactions on Image Processing. 15(12), 3736–3745 (2006).

    Article  MathSciNet  Google Scholar 

  3. Huang, K. and Aviyente, S.: Sparse Representation for Signal Classification. Proceedings of Advances in Neural Information Processing Systems 19. MIT Press (2006).

    Google Scholar 

  4. Olshausen, A. and Field, J.: Sparse Coding with an Overcomplete Basis Set: A Strategy Employed by VI? Vision Research. 37(23), 3311–3325 (1996).

    Article  Google Scholar 

  5. Field, J.: What is the Goal of Sensory Coding?. Neural Computation. 6, 559–601 (1994).

    Article  Google Scholar 

  6. Scott, C. and Nowak, R.: TEMPLAR: a wavelet-based framework for pattern learning and analysis. IEEE Transactions on Signal Processing. 52(8), 2264–2274 (2000).

    Article  MathSciNet  Google Scholar 

  7. Mallat, S. and Zhang, Z.: Matching Pursuits with Time-Frequency Dictionaries. IEEE Transactions on Signal Processing. 41(12), 3397–3415 (1999).

    Article  Google Scholar 

  8. Tropp, J. A.: Greed is good: Algorithmic Results for Sparse Approximation. IEEE Transactions on Information Theory. 50(10), 2231–2242 (2004).

    Article  MathSciNet  Google Scholar 

  9. Chen, S. S. and Donoho, D. L. and Saunders, M. A.: Atomic decomposition by basis pursuit. SIAM Review. 43(1), 129–159 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  10. Tropp, J. A.: Topics in Sparse Approximation. PhD thesis. University of Texas (2004).

    Google Scholar 

  11. Tropp, J. A.: Algorithms for simultaneous sparse approximation. Part I: Greedy pursuit. Signal Processing. 86, 572–588 (2006).

    Article  MATH  Google Scholar 

  12. Tropp, J. A.: Algorithms for simultaneous sparse approximation Part II: Convex relaxation. Signal Processing. 86, 589–602 (2006).

    Article  MATH  Google Scholar 

  13. Gorodnitsky, I. F. and George, J. S. and Rao, B. D.: Neuromagnetic source imaging with focuss: a recursive weighted minimum norm algorithm. Journal of Electroencephalogr Clin Neurophysiol. 95(4), 231–251 (1995).

    Article  Google Scholar 

  14. Cotter, S. and Rao, B. D.: Sparse channel estimation via matching pursuit with application to equalization. Journal of Electroencephalogr Clin Neurophysiol. 50(3), 374–377, March (2002).

    Google Scholar 

  15. Gribonval, R.: Sparse decomposition of stereo signals with matching pursuit and application to blind source separation of more than two sources from a stereo mixture. Proceedings of the 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing. Orlando, Florida, May (2002).

    Google Scholar 

  16. Duda, R. and Hart, P. and Stork D.: Pattern Classification (2nd edition). Wiley-Interscience (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag London Limited

About this paper

Cite this paper

Thiagarajan, J.J., Ramamurthy, K.N., Spanias, A. (2009). Sparse Representations for Pattern Classification using Learned Dictionaries. In: Bramer, M., Petridis, M., Coenen, F. (eds) Research and Development in Intelligent Systems XXV. SGAI 2008. Springer, London. https://doi.org/10.1007/978-1-84882-171-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-171-2_3

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-170-5

  • Online ISBN: 978-1-84882-171-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics