Skip to main content

MR Imaging of Cerebral Aneurysms

  • Chapter
  • First Online:
Neurovascular Imaging

Abstract

Intracranially, saccular (berry) aneurysms predominate. They are round or lobulated focal eccentric protrusions that usually arise from arterial bifurcations and occasionally arise directly from the walls of nonbranching arteries. An aneurysm may have a narrow neck or arise from a broad-based opening that connects to the parent vessel. Saccular aneurysms develop at the point where the tunica media is congenitally thin or absent and the internal elastica of the arterial wall is extremely fragmented or absent. They develop and expand over time, and hemodynamic stress plays an important role in their formation and growth. Rinne and Hernesniemi estimated that the risk of metachronous aneurysm formation in patients with previous subarachnoid hemorrhage (SAH) is approximately 2 or 3 times larger than risk in the general population [33].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmadi J, Tung H, Giannotta SL, Destian S. Monitoring of infectious intracranial aneurysms by sequential computed tomographic/magnetic resonance imaging studies. Neurosurgery. 1993;32:45–9.

    Article  PubMed  CAS  Google Scholar 

  2. Aoki N, Sakai T. Rebleeding from intracranial dissecting aneurysm in the vertebral artery. Stroke. 1990;21:1628–31.

    Article  PubMed  CAS  Google Scholar 

  3. Atkinson JL, Sundt TM Jr, Houser OW, Whisnant JP. Angiographic frequency of anterior circulation intracranial aneurysms. J Neurosurg. 1989;70:551–5.

    Google Scholar 

  4. Biondi A. Trunkal intracranial aneurysms: dissecting and fusiform aneurysms. Neuroimaging Clin N Am. 2006;16:453–65, viii.

    Google Scholar 

  5. Calhoun PS, Kuszyk BS, Heath DG, Carley JC, Fishman EK. Three-dimensional volume rendering of spiral CT data: theory and method. Radiographics. 1999;19:745–64.

    PubMed  CAS  Google Scholar 

  6. CARAT Investigators. Rates of delayed rebleeding from intracranial aneurysms are low after surgical and endovascular treatment. Stroke. 2006;37:1437–42.

    Article  Google Scholar 

  7. Chason JL, Hindman WM. Berry aneurysms of the circle of Willis; results of a planned autopsy study. Neurology. 1958;8:41–4.

    Article  PubMed  CAS  Google Scholar 

  8. Corr P, Wright M, Handler LC. Endocarditis-related cerebral aneurysms: radiologic changes with treatment. AJNR Am J Neuroradiol. 1995;16:745–8.

    PubMed  CAS  Google Scholar 

  9. Curnes JT, Shogry ME, Clark DC, Elster HJ. MR angiographic demonstration of an intracranial aneurysm not seen on conventional angiography. AJNR Am J Neuroradiol. 1993;14:971–3.

    PubMed  CAS  Google Scholar 

  10. Gibbs GF, Huston J III, Bernstein MA, Riederer SJ, Brown RD Jr. Improved image quality of intracranial aneurysms: 3.0-T versus 1.5-T time-of-flight MR angiography. AJNR Am J Neuroradiol. 2004;25:84–7.

    Google Scholar 

  11. Hirai T, Korogi Y, Murata Y, Ono K, Suginohara K, Uemura S, et al. Intracranial artery dissections: serial evaluation with MR imaging, MR angiography, and source images on MR angiography. Radiat Med. 2003;21:86–93.

    PubMed  Google Scholar 

  12. Horikoshi T, Fukamachi A, Nishi H, Fukasawa I. Detection of intracranial aneurysms by three-dimensional time-of-flight magnetic resonance angiography. Neuroradiology. 1994;36:203–7.

    Article  PubMed  CAS  Google Scholar 

  13. Huston J III, Nichols DA, Luetmer PH, Goodwin JT, Meyer FB, Wiebers DO, et al. Blinded prospective evaluation of MR angiography to known intracranial aneurysms: importance of aneurysm size. AJNR Am J Neuroradiol 1994;15:1607–14.

    Google Scholar 

  14. Ikawa F, Sumida M, Uozumi T, Kuwabara S, Kiya K, Kurisu K, et al. Comparison of three-dimensional phase-contrast magnetic resonance angiography with three-dimensional time-of-flight magnetic resonance angiography in cerebral aneurysms. Surg Neurol. 1994;42:287–92.

    Article  PubMed  CAS  Google Scholar 

  15. Iwata K, Misu N, Terada K, Kawai S, Momose M, Nakagawa H. Screening for unruptured asymptomatic intracranial aneurysms in patients undergoing coronary angiography. J Neurosurg. 1991;75:52–5.

    Article  PubMed  CAS  Google Scholar 

  16. Jäger HR, Ellamushi H, Moore EA, Grieve JP, Kitchen ND, Taylor WJ. Contrast-enhanced MR angiography of intracranial giant aneurysms. AJNR Am J Neuroradiol. 2000;21:1900–7.

    PubMed  Google Scholar 

  17. Johnson PT, Heath DG, Bliss DF, Cabral B, Fishman EK. Three-dimensional CT: real-time interactive volume rendering. AJR Am J Roentgenol. 1996;167:581–3.

    PubMed  CAS  Google Scholar 

  18. Kannoth S, Iyer R, Thomas SV, Furtado SV, Rajesh BJ, Kesavadas C, et al. Intracranial infectious aneurysm: presentation, management and outcome. J Neurol Sci. 2007;256:3–9.

    Article  PubMed  Google Scholar 

  19. Kassell NF, Tomer JC, Haley EC Jr, Jane JA, Adams HP. The international cooperative study on the timing of aneurysm surgery. Part 1: overall management results. J Neurosurg. 1990;73:18–36.

    Google Scholar 

  20. Kassell NF, Torner JC, Jane JA, Haley EC Jr, Adams HP. The international cooperative study on the timing of the aneurysm surgery. Part 2: surgical results. J Neurosurg. 1990;73:37–47.

    Google Scholar 

  21. Kitanaka C, Tanaka J, Kuwahara M, Teraoka A, Sasaki T, Takakura K, et al. Nonsurgical treatment of unruptured intracranial vertebral artery dissection with serial follow-up angiography. J Neurosurg. 1994;80:667–74.

    Article  PubMed  CAS  Google Scholar 

  22. Kojima M, Mabuchi N, Tsuda E, Nagasawa S. The efficacy of MR angiography in the detecting small asymptomatic cerebral aneurysms in clinical examination of the brain. Nosocchu No Geka. 1994;22:181–6 (article in Japanese).

    Google Scholar 

  23. Larson PS, Reisner A, Morassutti DJ, Abdulhadi B, Harpring JE. Traumatic intracranial aneurysms. Neurosurg Focus. 2000;8(1):e4.

    Article  PubMed  CAS  Google Scholar 

  24. Mallouhi A, Felber S, Chemelli A, Dessl A, Auer A, Schocke M, et al. Detection and characterization of intracranial aneurysms with MR angiography: comparison of volume-rendering and maximum-intensity-projection algorithms. AJR Am J Roentgenol. 2003;180:55–64.

    PubMed  Google Scholar 

  25. Mizutani T. A fatal, chronically growing basilar artery: a new type of dissecting aneurysm. J Neurosurg. 1996;84:962–71.

    Article  PubMed  CAS  Google Scholar 

  26. Mizutani T, Aruga T, Kirino T, Miki Y, Saito I, Tsuchida T. Recurrent subarachnoid hemorrhage from untreated ruptured vertebrobasilar dissecting aneurysms. Neurosurgery. 1995;36:905–11.

    Article  PubMed  CAS  Google Scholar 

  27. Murayama Y, Nien YL, Duckwiler G, Gobin YP, Jahan R, Frazee J, et al. Guglielmi detachable coil embolization of cerebral aneurysms: 11 years’ experience. J Neurosurg. 2003;98:959–66.

    Article  PubMed  Google Scholar 

  28. Nagahata M, Abe Y, Ono S, Hosoya T, Uno S. Surface appearance of the vertebrobasilar artery revealed on basiparallel anatomic scanning (BPAS)-MR imaging: its role for brain MR examination. AJNR Am J Neuroradiol. 2005;26:2508–13.

    PubMed  Google Scholar 

  29. Nakagawa K, Touho H, Morisako T, Osaka Y, Tatsuzawa K, Nakae H, et al. Long-term follow-up study of unruptured vertebral artery dissection: clinical outcomes and serial angiographic findings. J Neurosurg. 2000;93:19–25.

    Article  PubMed  CAS  Google Scholar 

  30. Nakagawa T, Hashi K. The incidence and treatment of asymptomatic unruptured cerebral aneurysms. J Neurosurg. 1994;80:217–23.

    Article  PubMed  CAS  Google Scholar 

  31. Nakagawa T, Hashi K, Tanabe S. Efficacy of MRA for detection of unruptured cerebral aneurysm in the “brain dock.” Nosocchu No Geka. 1994;22:187–90 (article in Japanese).

    Google Scholar 

  32. Nakatomi H, Segawa H, Kurata A, Shiokawa Y, Nagata K, Kamiyama H, et al. Clinicopathological study of intracranial fusiform and dolichoectatic aneurysms: insight on the mechanism of growth. Stroke. 2000;31:896–900.

    Article  PubMed  CAS  Google Scholar 

  33. Rinne JK, Hernesniemi JA. De novo aneurysms: special multiple intracranial aneurysms. Neurosurgery. 1993;33:981–5.

    Article  PubMed  CAS  Google Scholar 

  34. Ronkainen A, Puranen MI, Hernesniemi JA, Vanninen RL, Partanen PL, Saari JT, et al. Intracranial aneurysms: MR angiographic screening in 400 asymptomatic individuals with increased familial risk. Radiology. 1995;195:35–40.

    PubMed  CAS  Google Scholar 

  35. Ross JS, Masaryk TJ, Modic MT, Ruggieri PM, Haacke EM, Selman WR. Intracranial aneurysms: evaluation by MR angiography. AJNR Am J Neuroradiol. 1990;11:449–55.

    PubMed  CAS  Google Scholar 

  36. Sankhla SK, Gunawardena WJ, Coutinho CM, Jones AP, Keogh AJ. Magnetic resonance angiography in the management of aneurysmal subarachnoid haemorrhage: a study of 51 cases. Neuroradiology. 1996;38:724–9.

    Article  PubMed  CAS  Google Scholar 

  37. Schievink WI, Schaid DJ, Rogers HM, Piepgras DG, Michels VV. On the inheritance of intracranial aneurysms. Stroke. 1994;25:2028–37.

    Article  PubMed  CAS  Google Scholar 

  38. Schuierer G, Huk WJ, Laub G. Magnetic resonance angiography of intracranial aneurysms: comparison with intraarterial digital subtraction angiography. Neuroradiology. 1992;35:50–4.

    Article  PubMed  CAS  Google Scholar 

  39. Shimoji T, Bando K, Nakajima K, Ito K. Dissecting aneurysm of the vertebral artery. Report of seven cases and angiographic findings. J Neurosurg. 1984;61:1038–46.

    Article  PubMed  CAS  Google Scholar 

  40. Speth CP. Risks and benefits of screening for intracranial aneurysms. N Engl J Med. 2000;342:739–40.

    Article  PubMed  CAS  Google Scholar 

  41. Stehbens WE. Aneurysms and anatomical variations of cerebral arteries. Arch Pathol. 1963;75:45–64.

    PubMed  CAS  Google Scholar 

  42. Stock KW, Radue EW, Jacob AL, Bao XS, Steinbrich W. Intracranial arteries: prospective blinded comparative study of MR angiography and DSA in 50 patients. Radiology. 1995;195:451–6.

    PubMed  CAS  Google Scholar 

  43. Thornton J, Debrun GM, Aletich VA, Bashir Q, Charbel FT, Ausman J. Follow-up angiography of intracranial aneurysms treated with endovascular placement of Guglielmi detachable coils. Neurosurgery. 2002;50:239–49.

    PubMed  Google Scholar 

  44. Tsuchiya K, Katase S, Yoshino A, Hachiya J, Yodo K. Preliminary evaluation of volume-rendered three-dimensional display of time-of-flight MR angiography in the diagnosis of intracranial aneurysms. Neuroradiology. 2001;43:633–6.

    Article  PubMed  CAS  Google Scholar 

  45. White PM, Teasdale EM, Wardlaw JM, Easton V. Intracranial aneurysms: CT angiography and MR angiography for detection: prospective blinded comparison in a large patient cohort. Radiology. 2001;219:739–49.

    PubMed  CAS  Google Scholar 

  46. White PM, Wardlaw JM, Easton V. Can noninvasive imaging accurately depict intracranial aneurysms? A systematic review. Radiology. 2000;217:361–70.

    PubMed  CAS  Google Scholar 

  47. Wilcock D, Jaspan T, Holland I, Cherryman G, Worthington B. Comparison of magnetic resonance angiography with conventional angiography in the detection of intracranial aneurysms in patients presenting with subarachnoid haemorrhage. Clin Radiol. 1996;51:330–4.

    Article  PubMed  CAS  Google Scholar 

  48. Yamada N, Hayashi K, Murao K, Higashi M, Iihara K. Time-of-flight MR angiography targeted to coiled intracranial aneurysms is more sensitive to residual flow than is digital subtraction angiography. AJNR Am J Neuroradiol. 2004;25:1154–7.

    PubMed  Google Scholar 

  49. Yoshimoto Y, Wakai S. Unruptured intracranial vertebral artery dissection. Clinical course and serial radiographic imagings. Stroke. 1997;28:370–4.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Kurihara, N. (2011). MR Imaging of Cerebral Aneurysms. In: Takahashi, S. (eds) Neurovascular Imaging. Springer, London. https://doi.org/10.1007/978-1-84882-134-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-134-7_12

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-133-0

  • Online ISBN: 978-1-84882-134-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics