Skip to main content

Lipids in Gestational Diabetes: Abnormalities and Significance

  • Chapter
  • First Online:
Gestational Diabetes During and After Pregnancy

Abstract

Dyslipidemia in gestational diabetes (GDM) consists of an ∼50 mg/dL increase in triglyceride, an ∼4 mg/dL decrease in high density lipoprotein (HDL), and generally lower low density lipoprotein (LDL) levels by ∼30mg/dL, more small dense LDL, and greater susceptibility of LDL to oxidation. Predictors of increased birth weight are the postprandial hyperglycemia of GDM and elevated triglyceride. Predictors of diminished birth weight are lower HDL, lower apo-A-I, higher apo A-II and increased oxidative stress, typified in pre-eclampsia. Birth weight in an individual GDM pregnancy is likely a function of these competing trends. A therapeutic approach to the management of GDM is needed for the hyperglycemia and hypertriglyceridemia, but also for the heightened oxidative stress which may be propagated by abnormalities of LDL and HDL function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Knopp R, Bonet B, Zhu X-D. Lipid metabolism in pregnancy. In: Cowett R, ed. Principles of Perinatal-Neonatal Metabolism. New York: Springer; 1998:221-258.

    Chapter  Google Scholar 

  2. Knopp RH, Bergelin RO, Wahl PW, Walden CE, Chapman M, Irvine S. Population-based lipoprotein lipid reference values for pregnant women compared to nonpregnant women classified by sex hormone usage. Am J Obstet Gynecol. 1982;143:626-637.

    CAS  PubMed  Google Scholar 

  3. Knopp R, Paramsothy P. Part 2. Management of diabetic/medical complications in pregnancy: management of hyper/dyslipidmias. In: Kitzmiller J, Jovanovic L, Brown F, Coustan D, Reader D, eds. Managing Preexisting Diabetes and Pregnancy: Technical Reviews and Consensus Recommendations for Care. Alexandria: American Diabetes Association; 2008:355-374.

    Google Scholar 

  4. Alvarez JJ, Montelongo A, Iglesias A, Lasuncion MA, Herrera E. Longitudinal study on lipoprotein profile, high density lipoprotein subclass, and postheparin lipases during gestation in women. J Lipid Res. 1996;37:299-308.

    CAS  PubMed  Google Scholar 

  5. Magnusson-Olsson AL, Hamark B, Ericsson A, Wennergren M, Jansson T, Powell TL. Gestational and hormonal regulation of human placental lipoprotein lipase. J Lipid Res. 2006;47:2551-2561.

    Article  CAS  PubMed  Google Scholar 

  6. Larque E, Krauss-Etschmann S, Campoy C, et al. Docosahexaenoic acid supply in pregnancy affects placental expression of fatty acid transport proteins. Am J Clin Nutr. 2006;84:853-861.

    CAS  PubMed  Google Scholar 

  7. van Eijsden M, Hornstra G, van der Wal MF, Vrijkotte TG, Bonsel GJ. Maternal n-3, n-6, and trans fatty acid profile early in pregnancy and term birth weight: a prospective cohort study. Am J Clin Nutr. 2008;87:887-895.

    PubMed  Google Scholar 

  8. Banka CL. High density lipoprotein and lipoprotein oxidation. Curr Opin Lipidol. 1996;7:139-142.

    Article  CAS  PubMed  Google Scholar 

  9. Vaisar T, Pennathur S, Green PS, et al. Shotgun proteomics implicates protease inhibition and complement activation in the antiinflammatory properties of HDL. J Clin Invest. 2007;117:746-756.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Grunfeld C, Feingold KR. HDL and innate immunity: a tale of two apolipoproteins. J Lipid Res. 2008;49:1605-1606.

    Article  CAS  PubMed  Google Scholar 

  11. Oram JF. The ins and outs of ABCA. J Lipid Res. 2008;49:1150-1151.

    Article  CAS  PubMed  Google Scholar 

  12. Lasuncion MA, Bonet B, Knopp RH. Mechanism of the HDL2 stimulation of progesterone secretion in cultured placental trophoblast. J Lipid Res. 1991;32:1073-1087.

    CAS  PubMed  Google Scholar 

  13. Woollett LA. Maternal cholesterol in fetal development: transport of cholesterol from the maternal to the fetal circulation. Am J Clin Nutr. 2005;82:1155-1161.

    CAS  PubMed  Google Scholar 

  14. Schmid KE, Davidson WS, Myatt L, Woollett LA. Transport of cholesterol across a BeWo cell monolayer: implications for net transport of sterol from maternal to fetal circulation. J Lipid Res. 2003;44:1909-1918.

    Article  CAS  PubMed  Google Scholar 

  15. Stefulj J, Panzenboeck U, Becker T, et al. Human endothelial cells of the placental barrier efficiently deliver cholesterol to the fetal circulation via ABCA1 and ABCG1. Circ Res. 2009;104:600-608.

    Article  CAS  PubMed  Google Scholar 

  16. Madsen EM, Lindegaard ML, Andersen CB, Damm P, Nielsen LB. Human placenta secretes apolipoprotein B-100-containing lipoproteins. J Biol Chem. 2004;279:55271-55276.

    Article  CAS  PubMed  Google Scholar 

  17. Portman OW, Behrman RE, Soltys P. Transfer of free fatty acids across the primate placenta. Am J Physiol. 1969;216:143-147.

    CAS  PubMed  Google Scholar 

  18. Campbell FM, Clohessy AM, Gordon MJ, Page KR, Dutta-Roy AK. Uptake of long chain fatty acids by human placental choriocarcinoma (BeWo) cells: role of plasma membrane fatty acid-binding protein. J Lipid Res. 1997;38:2558-2568.

    CAS  PubMed  Google Scholar 

  19. Koletzko B, Larque E, Demmelmair H. Placental transfer of long-chain polyunsaturated fatty acids (LC-PUFA). J Perinat Med. 2007;35(suppl 1):S5-S11.

    CAS  PubMed  Google Scholar 

  20. Knopp RH, Bergelin RO, Wahl PW, Walden CE. Relationships of infant birth size to maternal lipoproteins, apoproteins, fuels, hormones, clinical chemistries, and body weight at 36 weeks gestation. Diabetes. 1985;34(suppl 2):71-77.

    Article  PubMed  Google Scholar 

  21. Weng W, Breslow JL. Dramatically decreased high density lipoprotein cholesterol, increased remnant clearance, and insulin hypersensitivity in apolipoprotein A-II knockout mice suggest a complex role for apolipoprotein A-II in atherosclerosis susceptibility. Proc Natl Acad Sci U S A. 1996;93:14788-14794.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Kalopissis AD, Pastier D, Chambaz J. Apolipoprotein A-II: beyond genetic associations with lipid disorders and insulin resistance. Curr Opin Lipidol. 2003;14:165-172.

    Article  CAS  PubMed  Google Scholar 

  23. Knopp RH, Magee MS, Walden CE, Bonet B, Benedetti TJ. Prediction of infant birth weight by GDM screening tests. Importance of plasma triglyceride. Diabetes Care. 1992;15:1605-1613.

    Article  CAS  PubMed  Google Scholar 

  24. Arbogast BW, Lee GM, Raymond TL. In vitro injury of porcine aortic endothelial cells by very-low-density lipoproteins from diabetic rat serum. Diabetes. 1982;31:593-599.

    Article  CAS  PubMed  Google Scholar 

  25. Hubel CA, McLaughlin MK, Evans RW, Hauth BA, Sims CJ, Roberts JM. Fasting serum triglycerides, free fatty acids, and malondialdehyde are increased in preeclampsia, are positively correlated, and decrease within 48 hours post partum. Am J Obstet Gynecol. 1996;174:975-982.

    Article  CAS  PubMed  Google Scholar 

  26. Pou KM, Massaro JM, Hoffmann U, et al. Visceral and subcutaneous adipose tissue volumes are cross-sectionally related to markers of inflammation and oxidative stress: the Framingham Heart Study. Circulation. 2007;116:1234-1241.

    Article  CAS  PubMed  Google Scholar 

  27. Knopp RH. Drug treatment of lipid disorders. N Engl J Med. 1999;341:498-511.

    Article  CAS  PubMed  Google Scholar 

  28. Napoli C, D’Armiento FP, Mancini FP, et al. Fatty streak formation occurs in human fetal aortas and is greatly enhanced by maternal hypercholesterolemia. Intimal accumulation of low density lipoprotein and its oxidation precede monocyte recruitment into early atherosclerotic lesions. J Clin Invest. 1997;100:2680-2690.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Napoli C, Glass CK, Witztum JL, Deutsch R, D’Armiento FP, Palinski W. Influence of maternal hypercholesterolaemia during pregnancy on progression of early atherosclerotic lesions in childhood: Fate of Early Lesions in Children (FELIC) study. Lancet. 1999;354:1234-1241.

    Article  CAS  PubMed  Google Scholar 

  30. Montes A, Walden CE, Knopp RH, Cheung M, Chapman MB, Albers JJ. Physiologic and supraphysiologic increases in lipoprotein lipids and apoproteins in late pregnancy and postpartum. Possible markers for the diagnosis of “prelipemia”. Arteriosclerosis. 1984;4:407-417.

    Article  CAS  PubMed  Google Scholar 

  31. Sanchez-Vera I, Bonet B, Viana M, et al. Changes in plasma lipids and increased low-density lipoprotein susceptibility to oxidation in pregnancies complicated by gestational diabetes: consequences of obesity. Metabolism. 2007;56:1527-1533.

    Article  CAS  PubMed  Google Scholar 

  32. Hollingsworth DR, Grundy SM. Pregnancy-associated hypertriglyceridemia in normal and diabetic women. Differences in insulin-dependent, non-insulin-dependent, and gestational diabetes. Diabetes. 1982;31:1092-1097.

    Article  CAS  PubMed  Google Scholar 

  33. Di Cianni G, Miccoli R, Volpe L, et al. Maternal triglyceride levels and newborn weight in pregnant women with normal glucose tolerance. Diabet Med. 2005;22:21-25.

    Article  PubMed  Google Scholar 

  34. Warth MR, Knopp RH. Lipid metabolism in pregnancy. V. Interactions of diabetes, body weight, age and high carbohydrate diet. Diabetes. 1977;26:1056-1062.

    Article  CAS  PubMed  Google Scholar 

  35. Knopp RH, Chapman M, Bergelin R, Wahl PW, Warth MR, Irvine S. Relationships of lipoprotein lipids to mild fasting hyperglycemia and diabetes in pregnancy. Diabetes Care. 1980;3:416-420.

    Article  CAS  PubMed  Google Scholar 

  36. Couch SC, Philipson EH, Bendel RB, Wijendran V, Lammi-Keefe CJ. Maternal and cord plasma lipid and lipoprotein concentrations in women with and without gestational diabetes mellitus. Predictors of birth weight? J Reprod Med. 1998;43:816-822.

    CAS  PubMed  Google Scholar 

  37. Knopp RH, Warth MR, Carrol CJ. Lipid metabolism in pregnancy. I. Changes in lipoprotein triglyceride and cholesterol in normal pregnancy and the effects of diabetes mellitus. J Reprod Med. 1973;10:95-101.

    CAS  PubMed  Google Scholar 

  38. Qiu C, Rudra C, Austin MA, Williams MA. Association of gestational diabetes mellitus and low-density lipoprotein (LDL) particle size. Physiol Res. 2007;56:571-578.

    CAS  PubMed  Google Scholar 

  39. Scifres C, Chen B, Nelson D, Sadovsky Y. The influence of maternal obesity and diabetes on placental lipi trafficking. J Obster Gynec. 2008;199:S22. abstract #50.

    Article  Google Scholar 

  40. Lindegaard ML, Damm P, Mathiesen ER, Nielsen LB. Placental triglyceride accumulation in maternal type 1 diabetes is associated with increased lipase gene expression. J Lipid Res. 2006;47:2581-2588.

    Article  CAS  PubMed  Google Scholar 

  41. Ortega-Senovilla H, Alvino G, Taricco E, Cetin I, Herrera E. Gestational diabetes mellitus upsets the proportion of fatty acids in umbilical arterial but not venous plasma. Diabetes Care. 2009;32:120-122.

    Article  CAS  PubMed  Google Scholar 

  42. Kitajima M, Oka S, Yasuhi I, Fukuda M, Rii Y, Ishimaru T. Maternal serum triglyceride at 24–32 weeks’ gestation and newborn weight in nondiabetic women with positive diabetic screens. Obstet Gynecol. 2001;97:776-780.

    Article  CAS  PubMed  Google Scholar 

  43. Schaefer-Graf UM, Graf K, Kulbacka I, et al. Maternal lipids as strong determinants of fetal environment and growth in pregnancies with gestational diabetes mellitus. Diabetes Care. 2008;31:1858-1863.

    Article  PubMed  Google Scholar 

  44. Bomba-Opon D, Wielgos M, Szymanska M, Bablok L. Effects of free fatty acids on the course of gestational diabetes mellitus. Neuro Endocrinol Lett. 2006;27:277-280.

    CAS  PubMed  Google Scholar 

  45. Hansel B, Giral P, Nobecourt E, et al. Metabolic syndrome is associated with elevated oxidative stress and dysfunctional dense high-density lipoprotein particles displaying impaired antioxidative activity. J Clin Endocrinol Metab. 2004;89:4963-4971.

    Article  CAS  PubMed  Google Scholar 

  46. Tesauro M, Schinzari F, Rovella V, et al. Tumor necrosis factor-alpha antagonism improves vasodilation during hyperinsulinemia in metabolic syndrome. Diabetes Care. 2008;31:1439-1441.

    Article  CAS  PubMed  Google Scholar 

  47. Kim C, Cheng YJ, Beckles GL. Inflammation among women with a history of gestational diabetes mellitus and diagnosed diabetes in the Third National Health and Nutrition Examination Survey. Diabetes Care. 2008;31:1386-1388.

    Article  PubMed  Google Scholar 

  48. Chen X, Scholl TO. Oxidative stress: changes in pregnancy and with gestational diabetes mellitus. Curr Diab Rep. 2005;5:282-288.

    Article  CAS  PubMed  Google Scholar 

  49. Coughlan MT, Permezel M, Georgiou HM, Rice GE. Repression of oxidant-induced nuclear factor-kappaB activity mediates placental cytokine responses in gestational diabetes. J Clin Endocrinol Metab. 2004;89:3585-3594.

    Article  CAS  PubMed  Google Scholar 

  50. Bonet B, Hauge-Gillenwater H, Zhu XD, Knopp RH. LDL oxidation and human placental trophoblast and macrophage cytotoxicity. Proc Soc Exp Biol Med. 1998;217:203-211.

    Article  CAS  PubMed  Google Scholar 

  51. Wentzel P, Gareskog M, Eriksson UJ. Decreased cardiac glutathione peroxidase levels and enhanced mandibular apoptosis in malformed embryos of diabetic rats. Diabetes. 2008;57:3344-3352.

    Article  CAS  PubMed  Google Scholar 

  52. Hubel CA, Roberts JM, Taylor RN, Musci TJ, Rogers GM, McLaughlin MK. Lipid peroxidation in pregnancy: new perspectives on preeclampsia. Am J Obstet Gynecol. 1989;161:1025-1034.

    Article  CAS  PubMed  Google Scholar 

  53. Clausen T, Djurovic S, Henriksen T. Dyslipidemia in early second trimester is mainly a feature of women with early onset pre-eclampsia. Bjog. 2001;108:1081-1087.

    CAS  PubMed  Google Scholar 

  54. Branch DW, Mitchell MD, Miller E, Palinski W, Witztum JL. Pre-eclampsia and serum antibodies to oxidised low-density lipoprotein. Lancet. 1994;343:645-646.

    Article  CAS  PubMed  Google Scholar 

  55. Liguori A, D’Armiento FP, Palagiano A, et al. Effect of gestational hypercholesterolaemia on omental vasoreactivity, placental enzyme activity and transplacental passage of normal and oxidised fatty acids. Bjog. 2007;114:1547-1556.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by NIH grant DK 035816, Clinical Nutrition Research Unit at the University of Washington.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth Chan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer London

About this chapter

Cite this chapter

Knopp, R.H., Chan, E., Zhu, X., Paramsothy, P., Bonet, B. (2010). Lipids in Gestational Diabetes: Abnormalities and Significance. In: Kim, C., Ferrara, A. (eds) Gestational Diabetes During and After Pregnancy. Springer, London. https://doi.org/10.1007/978-1-84882-120-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-120-0_11

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-119-4

  • Online ISBN: 978-1-84882-120-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics