Skip to main content

Biomass Feedstocks

  • Chapter
Biofuels

Part of the book series: Green Energy and Technology ((GREEN))

  • 3616 Accesses

Abstract

Biomass is the most important renewable energy source in the world. Biomass fuel is a renewable energy source and its importance will increase as national energy policy and strategy focuses more heavily on renewable sources and conservation. In the future, biomass has the potential to provide a cost-effective and sustainable supply of energy. Renewable energy is a promising alternative solution because it is clean and environmentally safe. The promise of renewable energy is that it offers a solution to many of the environ-mental and social problems associated with fossil and nuclear fuels. Biomass feedstocks include forest products wastes, agricultural residues, organic fractions of municipal solid wastes, paper, cardboard, plastic, food waste, green waste, and other waste. Biomass is a sustainable feedstock for chemicals and energy products. Biomass feedstocks are more evenly distributed in the world. As an energy source that is highly productive, renewable, carbon neutral, and easy to store and transport, biomass has drawn worldwide attention recently.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdelmouleh, M., Boufi, S., Belgacem, M.N., Duarte, A.P., Salah, A., Gandini, A. 2004. Modification of cellulosic fibres with functionalised silanes: development of surface properties. Int J Adhesion Adhesives 24:43–54.

    Article  CAS  Google Scholar 

  • Alanne, K., Sari, A. 2006. Distributed energy generation and sustainable development. Renew Sust Energy Rev 10:539–558.

    Article  Google Scholar 

  • Alonso, M.V., Rodriguez, J.J., Oliet, M., Rodriguez, F., Garcia, J., Gilarranz, M.A. 2001. Characterization and structural modification of ammonic lignosulfonate by methylolation. J Appl Polym Sci 82:2661–2668.

    Article  CAS  Google Scholar 

  • Arkesteijn, K., Oerlemans, L. 2005. The early adoption of green power by Dutch households. An empirical exploration of factors influencing the early adoption of green electricity for domestic purposes. Energy Policy 33:183–196.

    Article  Google Scholar 

  • Balat, M. 2008a. Mechanisms of thermochemical biomass conversion processes. Part 1: Reactions of pyrolysis. Energy Sources Part A 30:620–635.

    Article  CAS  Google Scholar 

  • Balat, M. 2008b. Mechanisms of thermochemical biomass conversion processes. Part 2: Reactions of gasification. Energy Sources Part A 30:636–648.

    Article  CAS  Google Scholar 

  • Balat, M. 2008c. Mechanisms of thermochemical biomass conversion processes. Part 3: Reactions of liquefaction. Energy Sources Part A 30:649–659.

    Article  CAS  Google Scholar 

  • Baker, A.J. 1982. Wood fuel properties and fuel products from Woods, in Proc. Fuelwood, Management and Utilisation Seminar, Nov. 9–11, Michigan State Univ., East Lansing, MI.

    Google Scholar 

  • Bridgwater, A.V. 2003. Renewable fuels and chemicals by thermal processing of biomass. Chem Ind J 91:87–102.

    CAS  Google Scholar 

  • Bushnell, D.J., Haluzok, C., Dadkhah-Nikoo, A. 1989. Biomass fuel characterization, testing and evaluating the combustion characteristics of selected biomass fuels. Bonneville Power Administration, Corvallis, OR.

    Google Scholar 

  • Cetin, N.S., Ozmen, N. 2003. Studies on lignin-based adhesives for particleboard panels. Turk J Agric For 27:183–189.

    CAS  Google Scholar 

  • Crespo, J.E., Balart, R., Sanchez, L., Lopez, J. 2007. Mechanical behaviour of vinyl plastisols with cellulosic fillers. Analysis of the interface between particles and matrices. Int J Adhesion Adhesives 27:422–428.

    Article  CAS  Google Scholar 

  • Danielson, B., Simanson, R.. 1998. Kraft lignin in phenol formaldehyde resin. Part 1. Partial replacement of phenol by kraft lignin in phenol formaldehyde adhesives for plywood. J Adhesion Sci 12:923–939.

    Article  CAS  Google Scholar 

  • Das, S., Malmberg, M.J., Frazier, C.E. 2007. Cure chemistry of wood/polymeric isocyanate (PMDI) bonds: Effect of wood species. Int J Adhesion Adhesives. 27: 250–257.

    Article  CAS  Google Scholar 

  • Demirbas, A. 1991. Fatty and resin acids recovered from spruce wood by supercritical acetone extraction. Holzforschung 45:337–339.

    Article  CAS  Google Scholar 

  • Demirbas, A.1997. Calculation of higher heating values of biomass fuels. Fuel 76:431–434.

    Article  CAS  Google Scholar 

  • Demirbas, A. 1998. Determination of combustion heat of fuels by using non-calorimetric experimental data. Energy Edu Sci Technol 1:7–12.

    CAS  Google Scholar 

  • Demirbas, A. 2000. Mechanisms of liquefaction and pyrolysis reactions of biomass. Energy Convers Mgmt 41:633–646.

    Article  CAS  Google Scholar 

  • Demirbas, A. 2001. Biomass resource facilities and biomass conversion processing for fue and chemicals. Energy Convers Mgmt 42:1357–1378.

    Article  CAS  Google Scholar 

  • Demirbas, A. 2002. Fuel characteristics of olive husk and walnut, hazelnut, sunflower and almond shells. Energy Sources 24:213–219.

    Google Scholar 

  • Demirbas, A. 2003. Fuelwood characteristics of six indigenous wood species from Eastern Black Sea Region. Energy Sources 25:309–316.

    Article  CAS  Google Scholar 

  • Demirbas A. 2004. Combustion characteristics of different biomass fuels. Prog Energy Combus Sci 30:219–230.

    Article  CAS  Google Scholar 

  • Demirbas A. 2006. Production and characterization of bio-chars from biomass via pyrolysis. Energy Sources Part A 28:413–422.

    Article  CAS  Google Scholar 

  • Demirbas, A. 2008a. Biodiesel: A Realistic fuel alternative for diesel engines. Springer, London.

    Google Scholar 

  • Demirbas, A. 2008b. Heavy metal adsorption onto agro based waste materials: A review. J Hazard Mat 157:220–229.

    Article  CAS  Google Scholar 

  • Demirbas, A., Güllü, D., Caglar, A., Akdeniz, F. 1997. Determination of calorific values of fuel from lignocellulosics. Energy Sources 19:765–770.

    Article  CAS  Google Scholar 

  • Demirbas, A., Kucuk, M.M. 1993. Delignification of Ailanthus altissima and spruce orientalis with glycerol or alkaline glycerol at atmospheric pressure. Cellulose Chem Technol 27:679–686.

    Google Scholar 

  • Demirbas, A., Ucan, H.I. 1991. Low temperature pyrolysis of black liquor and polymerization of products in alkali aqueous medium. Fuel Sci Technol Int 9:93–105.

    CAS  Google Scholar 

  • Elliott, D. 1999. Prospects for renewable energy and green energy markets in the UK. Renewable Energy 16:1268–1271.

    Article  Google Scholar 

  • El-Saied, H., Nada, A.M.A., Ibrahem, A.A., Yousef, M.A. 1984. Waste liquers from cellulosic industries. III. Lignin from soda-spent liquor as a component in phenol-formaldehyde resin. Angew Makromol Chem 122:169–181.

    Article  CAS  Google Scholar 

  • Fengel, D., Wegener, G. 1983. In Wood chemistry, ultrastructure, reactions, Chap 7, p. 326.Walter de Gruyter, Berlin.

    Google Scholar 

  • Freudenberg, K., Neish, A.C. 1968. Constitution and biosynthesis of lignin. Springer, New York.

    Google Scholar 

  • Fridleifsson, I.B. 2003. Status of geothermal energy amongst the world’s energy sources. Geothermics 32:379–388.

    Article  Google Scholar 

  • Garcia-Valls, R., Hatton, T.A. 2003. Metal ion complexation with lignin derivatives. Chem Eng J 94:99–105.

    Article  CAS  Google Scholar 

  • Gardziella, A., Pilato, L.A., Knop, A. 2000. Phenolic resins: Chemistry, applications, standardization, safety and ecology. Springer, New York.

    Google Scholar 

  • Glasser, W.G., Sarkanen, S. (eds.) 1989. Lignin: Properties and materials, American Chemical Society, Washington, DC.

    Google Scholar 

  • Goldemberg, J., Coelho, S.T. 2004. Renewable energy – Traditional biomass vs. modern biomass. Energy Policy 32:711–714.

    Article  Google Scholar 

  • Goldstein, I.S. 1981. Organic chemical from biomass, CRC Press, Boca Raton, FL.

    Google Scholar 

  • Haag, A.P., Geesey, G.G., Mittleman, M.W. 2006. Bacterially derived wood adhesive. Int J Adhesion Adhesives.26: 177–183.

    Article  CAS  Google Scholar 

  • Haag, A.P., Maier, R.M. Combie, J., Geesey, G.G. 2004. Bacterially derived biopolymers as wood adhesives. Int J Adhesion Adhesives.24: 495–502.

    Article  CAS  Google Scholar 

  • Hamelinck, C., Faaij, A. 2006. Outlook for advanced biofuels. Energy Policy 34:3268–3283.

    Article  Google Scholar 

  • Hashem, A., Akasha, R.A.,. Ghith, A., Hussein, D.A. 2007. Adsorbent based on agricultural wastes for heavy metal and dye removal: A review. Energy Edu Sci Technol 19:69–86.

    CAS  Google Scholar 

  • He, G., Yan, N. 2005. Effect of moisture content on curing kinetics of pMDI resin and wood mixtures. Int J Adhesion Adhesives 25: 450–455.

    CAS  Google Scholar 

  • Hergert, H.L., Pye, E.K. 1992. Recent history of organosolv pulping, Tappi Notes-1992 Solvent Pulping Symposium, pp. 9–26.

    Google Scholar 

  • Hoyt, C.H., Goheen, D.W. 1971. Lignins–Occurrence, formation, structure and reactions. Wiley-Interscience, New York.

    Google Scholar 

  • IPCC. 1997. Greenhouse gas inventory reference manual: Revised 1996 IPCC guidelines for national greenhouse gas inventories. Report Vol. 3, p. 1.53, Intergovernmental Panel on Climate Change (IPCC), Paris, France (available from: www.ipcc.ch/pub/guide.htm).

    Google Scholar 

  • IPCC. 2007. Intergovernmental Panel on Climate Change (IPCC) fourth assessment report, Working Group III (available from http://www.ipcc.ch).

    Google Scholar 

  • Jain, R.K. 1992. Fuelwood characteristics of certain hardwood and softwood tree species of India.Biores Technol 41:129–133.

    Article  CAS  Google Scholar 

  • Jain, R.K., Singh, B. 1999. Fuelwood characteristics of selected indigenous tree species fromcentral India. Biores Technol 68:305–308.

    Article  CAS  Google Scholar 

  • Karaosmanoglu, F., Aksoy, H.A. 1988. The phase separation problem of gasoline-ethaol mixture as motor fuel alternatives. J Thermal Sci Technol 11:49–52.

    Google Scholar 

  • Kartha, S., Larson, E.D. 2000. Bioenergy primer: Modernised biomass energy for sustainable Development. Technical Report UN Sales Number E.00.III.B.6, United Nations Development Programme, 1 United Nations Plaza, New York, NY 10017, USA.

    Google Scholar 

  • Knop, A., Pilato, L.A.. 1985. Phenolic resin chemistry, application and performance, future directions. Springer, Heidelberg.

    Google Scholar 

  • Knop, A., Scheibm W. 1979. Chemistry and application of phenolic resins. Springer, Berlin.

    Google Scholar 

  • Kopf, P.W., Little, A.D. 1991. Phenolic resins. In Kirk-Othmer Encyclopedia of Chemical Technology, Vol. 18.

    Google Scholar 

  • Kuznetsov, S.A., Kuznetsov, B.N., Aleksandrova, N.B., Danlov, V.G., Zhizhaev, A.M. 2005. Obtaining arabinigalactan, dihydrate quercetin and microcrystalline cellulose using machanochemical activation. Chem Sustain Develop 13:261–268.

    Google Scholar 

  • Larson, E.D. 1993. Technology for fuels and electricity from biomass. Annual Rev. Energy Environ. 18:567–630.

    Article  Google Scholar 

  • Leite, J.L., Pires, A.T.N., Ulson de Souza, S.M.A.G., Ulson de Souza, A.A. 2004. Characterisation of a phenolic resin and sugar cane pulp composite. Brazilian J. Chem. Eng. 21:253– 260.

    CAS  Google Scholar 

  • Li, K., Geng, X., Simonsen, J., Karchesy, J. 2004. Novel wood adhesives from condensed tannins and polyethylenimine. Int J Adhesion Adhesives 24:327–333.

    Article  CAS  Google Scholar 

  • Liu, Y., Li, K. 2007. Development and characterization of adhesives from soy protein for bonding wood. Int J Adhesion Adhesives 27:59–67.

    Article  CAS  Google Scholar 

  • Lorenz, L.F., Christiansen, A.W. 1995. Interactions of phenolic resin alkalinity, moisture content, and cure behavior. Ind Eng Chem Res 34: 4520–4523.

    Article  CAS  Google Scholar 

  • Lubin, G. 1969. Handbook of fiberglass and advanced plastics composites. Van Nostrand Reinhold, New York.

    Google Scholar 

  • Mantanis, G.I., Young, R.A., Rowell, R.M. 1995. Swelling of compressed cellulose fiber webs in organic liquids. Cellulose 2:1–22.

    CAS  Google Scholar 

  • Mohan, D., Pittman, C.U., Jr., Steele, P.H. 2006. Pyrolysis of wood/biomass for bio-oil: A critical review. Energy Fuels 20:848–889.

    Article  CAS  Google Scholar 

  • Morrison, R.T., Boyd, R.N. 1983. Organic chemistry, fourth ed., Chap. 24,. 960, Allyn and Bacon, New York.

    Google Scholar 

  • Murphya, H., Niitsuma, H. 1999. Strategies for compensating for higher costs of geothermal electricity with environmental benefits. Geothermics 28:693–711.

    Article  Google Scholar 

  • Pérez, J.M., Rodríguez, F., Alonso, M.V., Oliet, M., Echeverría, J.M. 2007. Characterization of a novolac resin substituting phenol by ammonium lignosulfonate as filler or extender. BioRes 2:270–283.

    Google Scholar 

  • Ragland, K.W., Aerts, D.J., Baker, A.J. 1991. Properties of wood for combustion analysis. Biores Technol 37:161–168.

    Article  CAS  Google Scholar 

  • Reddy, S.S., Kotaıah, B., Reddy, N.S.P., Velu, M. 2006. The removal of composite reactive dye from dyeing unit effluent using sewage sludge derived activated carbon. Turkish J Eng Env Sci 30:367–373.

    CAS  Google Scholar 

  • Rydholm, S.A. 1965. Pulping Processes. Wiley-Interscience, New York.

    Google Scholar 

  • Saga, K., Yokoyama, S., Imou, K., Kaizu, Y. 2008. A comparative study of the effect of CO2 emission reduction by several bioenergy production systems. Int Energy J 9:53–60.

    Google Scholar 

  • Sarkanen, K.V., Ludwig, C.H. (eds.) 971. Lignins: Occurrence, formation, structure and reactions, Wiley, New York.

    Google Scholar 

  • Sellers, Jr., T. 1993. Modification of phenolic resin with organosolv lignins and evaluation of strandboards made by the resin as binder. PhD Thesis, The University of Tokyo, Japan.

    Google Scholar 

  • Shafizadeh, F. 1982. Introduction to pyrolysis of biomass. J Anal Appl Pyrolysis 3:283–305.

    Article  CAS  Google Scholar 

  • Shafizadeh, F. 1985. In Fundamentals of thermochemicals biomass conversion. In: Overend, R.P.,Milne, T.A., Mudge, L.K. (eds.). Elsevier Applied Science, New York.

    Google Scholar 

  • Sheehan, J., Dunahay, T., Benemann, J., Roessler, P. 1998. A look back at the U.S. Department of Energy’s aquatic species program – Biodiesel from algae. National Renewable Energy Laboratory (NREL) Report: NREL/TP-580-24190. Golden, CO.

    Google Scholar 

  • Tewfik, S.R. 2004. Biomass utilization facilities and biomass processing technologies. Energy Edu Sci Technol 14:1–19.

    Google Scholar 

  • Theander, O. 1985. In: Fundamentals of thermochemical biomass conversion. In Overand, R.P., Mile, T.A., Mudge, L.K. (eds.). Elsevier Applied Science, New York.

    Google Scholar 

  • Tillman, D.A. 1978. Wood as an Energy Resource, Academic Press, New York.

    Google Scholar 

  • Timell, T.E. 1967. Recent progress in the chemistry of wood hemicelluloses. Wood Sci Technol 1:45–70.

    Article  CAS  Google Scholar 

  • UNDP (United Nations Development Programme). 2000. World Energy Assessment. Energy and the challange of sustainability.

    Google Scholar 

  • Weimer, P.J., Koegel, R.G., Lorenz, L.F., Frihart, C.R., Kenealy, W.R. 2005. Wood adhesives prepared from lucerne fiber fermentation residues of Ruminococcus albus and Clostridium thermocellum. Appl Microbiol Biotechnol 66:635–640.

    Article  CAS  Google Scholar 

  • Wenzl, H.F.J., Brauns, F.E., Brauns, D.A. 1970. The chemical technology of wood. Academic Press, New York.

    Google Scholar 

  • Wooten, A.L., Sellers, T., Tahir, P.M. 1988. Reaction of formaldehyde with lignin. Forest Products J 38(6): 45–46.

    CAS  Google Scholar 

  • Yesil, Z.D., Karaoglanoglu, S., Akyil, M.S., Seven, N. 2007. Evaluation of the bond strength of different composite resins to porcelain and metal alloy. Int J Adhesion Adhesives 27:258–262.

    Article  CAS  Google Scholar 

  • Young, R.A. 1986. Structure, swelling and bonding of cellulose fibers. In Cellulose: Structure, modification, and hydrolysis, pp. 91–128. Wiley, New York.

    Google Scholar 

  • Ysbrandy, R.E., Sanderson, R.D., Gerischer, G.F.R. 1992. Adhesives from autohydrolysis bagasse lignin. Part I. Holzforschung 46:249–252.

    CAS  Google Scholar 

  • Zanzi, R. 2001. Pyrolysis of biomass. Dissertation, Royal Institute of Technology, Department ofChemical Engineering and Technology, Stockholm.

    Google Scholar 

  • Zanzi, R,. Sjöström, K., Björnbom, E. 1996. Rapid high-temperature pyrolysis of biomass in afree-fall reactor. Fuel 75:545–550.

    Article  CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer London

About this chapter

Cite this chapter

(2009). Biomass Feedstocks. In: Biofuels. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-1-84882-011-1_2

Download citation

Publish with us

Policies and ethics