Skip to main content

Abstract

Proton exchange membrane fuel cells (PEMFCs) have attracted intensive attention as a result of their applicability to transportation systems and portable electronic products [1]. The important challenges in PEMFC research arise in the catalyst layers (CLs) because these are complex and heterogeneous. The catalyst layers need to be designed so as to generate high rates of the desired reactions and minimize the amount of catalyst necessary for reaching the required levels of power output. To meet the goal, the following requirements need to be considered: (1) large three-phase interface in the CL, (2) efficient transport of protons, (3) easy transport of reactant and product gases and removal of condensed water, and (4) continuous electronic current passage between the reaction sites and the current collector. A CL with a thickness around several micrometers is a critical component of a PEMFC and requires more elaborate treatment [2]. The CL is in direct contact with the membrane and the gas diffusion layer (GDL), as shown in Figure 7.1. It is also referred to as the active layer [3]. Gottesfeld and Zawodzinski provided a good overview of the CL structure and functions [4]. The overall CL performance depends on all these critical factors and is therefore essential to identify the electrode structures and operation conditions. In this section, the functions and the technical impacts of the CLs will be described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rajalakshmi N, Dhathathreyan KS. Catalyst layer in PEMFC electrodes: fabrication, characterization and analysis. Chem Eng J 2007;129:31–40.

    Article  Google Scholar 

  2. Wang CY. Fundamental models for fuel cell engineering. Chem Rev 2004;104:4727–66.

    Article  Google Scholar 

  3. Litster S, McLean G. PEM fuel cell electrodes. J Power Sources 2004;130:61–76.

    Article  Google Scholar 

  4. Gottesfeld S, Zawodzinski TA. Polymer electrolyte fuel cells. In: Alkire RC, Kolb DM, editors. Advances in electrochemical science and engineering. New York: Wiley-VCH; 1997. 5:195–301.

    Google Scholar 

  5. Ticianelli EA, Derouin CR, Redondo A, Srinivasan S. Methods to advance technology of proton exchange membrane fuel cells. J Electrochem Soc 1988;135:2209–14.

    Article  Google Scholar 

  6. Wilson MS, Gottesfeld S. High performance catalyzed membranes of ultra-low Pt loadings for polymer electrolyte fuel cells. J Electrochem Soc 1992;139:L28–30.

    Article  Google Scholar 

  7. Passalacqua E, Lufrano F, Squadrito G, Pattia A, Giorgi L. Influence of the structure in low-Pt loading electrodes for polymer electrolyte fuel cells. Electrochim Acta 1998;43:3665–73.

    Article  Google Scholar 

  8. Yoon YG, Yang TH, Park GG, Lee WY, Kim CS. A multi-layer structured cathode for the PEMFC. J Power Sources 2003;118:189–92.

    Article  Google Scholar 

  9. Passalacqua E, Lufrano F, Squadrito G, Patti A, Giorgi L. Nafion content in the catalyst layer of polymer electrolyte fuel cells: effects on structure and performance. Electrochim Acta 2001;46:799–805.

    Article  Google Scholar 

  10. Zhang XW, Shi PF. Dual-bonded catalyst layer structure cathode for PEMFC. Electrochem Commun 2006;8:1229–34.

    Article  MathSciNet  Google Scholar 

  11. Yu HM, Ziegler C, Oszcipok M, Zobel M, Hebling C. Hydrophilicity and hydrophobicity study of catalyst layers in proton exchange membrane fuel cells. Electrochim Acta 2006;51:1199–1207.

    Article  Google Scholar 

  12. Wei ZD, Ran HB, Liu XA, Liu Y, Sun CX, Chan SH, Shen PK. Numerical analysis of Pt utilization in PEMFC catalyst layer using random cluster model. Electrochim Acta 2006;51:3091–96.

    Article  Google Scholar 

  13. Schultz T, Sundmacher K. Mass, charge and energy transport phenomena in a polymer electrolyte membrane (PEM) used in a direct methanol fuel cell (DMFC): modelling and experimental validation of fluxes. J Membrane Sci 2006;276:272–85.

    Article  Google Scholar 

  14. Cha SY, Lee WM. Performance of proton exchange membrane fuel cell electrodes prepared by direct decomposition of ultrathin platinum on the membrane surface. J Electrochem Soc 1999;146:4055–60.

    Article  Google Scholar 

  15. O’Hayre R, Lee SJ, Cha SW, Prinz FB. A sharp peak in the performance of sputtered platinum fuel cells at ultra-low platinum loading. J Power Sources 2002;109:483–93.

    Article  Google Scholar 

  16. Passos RR, Paganin VA, Ticianelli EA. Studies of the performance of PEM fuel cell cathodes with the catalyst layer directly applied on Nafion membranes. Electrochim Acta 2006;51:5239–45.

    Article  Google Scholar 

  17. Antoine O, Bultel Y, Ozil P, Durand R. Catalyst gradient for cathode active layer of proton exchange membrane fuel cell. Electrochim Acta 2000;45:4493–4500.

    Article  Google Scholar 

  18. Shao YY, Yin GP, Wang ZB, Gao YZ. Proton exchange membrane fuel cell from low temperature to high temperature: material challenges. J Power Sources 2007;167:235–42.

    Article  Google Scholar 

  19. Vera M. A single-phase model for liquid-feed DMFCs with non-Tafel kinetics. J Power Sources 2007;171:763–77.

    Article  Google Scholar 

  20. Sundmacher K, Schultz T, Zhou S, Scott K, Ginkel M, Gilles ED. Dynamics of the direct methanol fuel cell (DMFC): experiments and model-based analysis. Chem Eng Sci 2001;56:333–41.

    Article  Google Scholar 

  21. Haile SM. Fuel cell materials and components. Acta Materialia 2003;51:5981–6000.

    Article  Google Scholar 

  22. Sasikumar G, Ihm JW, Ryu H. Dependence of optimum Nafion content in catalyst layer on platinum loading. J Power Sources 2004;132:11–17.

    Article  Google Scholar 

  23. Yang Y, Holdcroft S. Synthetic strategies for controlling the morphology of proton conducting polymer membranes. Fuel Cells 2005;5:171–86.

    Article  Google Scholar 

  24. Hickner MA, Pivovar BS. The chemical and structural nature of proton exchange membrane fuel cell properties, Fuel Cells 2005;5:213–29.

    Article  Google Scholar 

  25. Kraemer SV, Puchner M, Jannasch P, Lundblad A, Lindbergh G. Gas diffusion electrodes and membrane electrode assemblies based on a sulfonated polysulfone for high-temperature PEMFC. J Electrochem Soc 2006;153:A2077–84.

    Article  Google Scholar 

  26. Hickner MA, Ghassemi H, Kim YS, Einsla BR, McGrath JE. Alternative polymer systems for proton exchange membranes (PEMs). Chem Rev 2004;104:4587–612.

    Article  Google Scholar 

  27. Li QF, He RH, Jensen JO, Bjerrum NJ. Approaches and recent development of polymer electrolyte membranes for fuel cells operating above 100 °C. Chem Mater 2003;15:4896–915.

    Article  Google Scholar 

  28. Song JM, Cha SY, Lee WM. Optimal composition of polymer electrolyte fuel cell electrodes determined by the AC impedance method. J Power Sources 2001;94:78–84.

    Article  Google Scholar 

  29. Poltarzewski Z, Staiti P, Alderucci V, Wieczorek W, Giordano N. Nafion distribution in gas diffusion electrodes for solid-polymer-electrolyte-fuel-cell applications. J Electrochem Soc 1992;139:761–65.

    Article  Google Scholar 

  30. Paik W, Springer TE, Srinivasan S. Kinetics of fuel cell reactions at the platinum/solid polymer electrolyte interface. J Electrochem Soc 1989;136:644–49.

    Article  Google Scholar 

  31. Paganin VA, Ticianelli EA, Gonzalez ER. Development and electrochemical studies of gas diffusion electrodes for polymer electrolyte fuel cells. J Appl Electrochem 1996;26:297–304.

    Article  Google Scholar 

  32. Easton EB, Astill TD, Holdcroft S. Properties of gas diffusion electrodes containing sulfonated poly(ether ether ketone). J Electrochem Soc 2005;152:A752–8.

    Article  Google Scholar 

  33. Kim YS, Sumner MJ, Harrison WL, Riffle JS, McGrath JE, Pivovar BS. Direct methanol fuel cell performance of disulfonated poly(arylene ether benzonitrile) copolymers. J Electrochem Soc 2004;151:A2150–6.

    Article  Google Scholar 

  34. Roziere J, Jones DJ. Non-fluorinated polymer materials for proton exchange membrane fuel cells. Ann Rev Mater Res 2003;33:503–55.

    Article  Google Scholar 

  35. Tang HL, Pan M, Wang F, Shen PK, Jiang SP. Highly durable proton exchange membranes for low temperature fuel cells. J Phys Chem B 2007;111:8684–90.

    Article  Google Scholar 

  36. Tang H, Qi ZG, Ramani M, Elter JF. PEM fuel cell cathode carbon corrosion due to the formation of air/fuel boundary at the anode. J Power Sources 2006;158:1306–12.

    Article  Google Scholar 

  37. Stevens A, Dahn JR. Thermal degradation of the support in carbon-supported platinum electrocatalysts for PEM fuel cells. Carbon 2005;43:179–88.

    Article  Google Scholar 

  38. Cai M, Ruthkosky MS, Merzougui , Swathirajan S, Balogh MP, Oh SH. Investigation of thermal and electrochemical degradation of fuel cell catalysts. J Power Sources 2006;160:977–86.

    Article  Google Scholar 

  39. Baturina OA, Aubuchon SR, Wynne KJ. Thermal stability in air of Pt/C catalysts and PEM fuel cell catalyst layers. Chem Mater 2006;18:1498–1504.

    Article  Google Scholar 

  40. Kangasniemi KH, Condit DA, Jarvi TD. Characterization of Vulcan electrochemically oxidized under simulated PEM fuel cell conditions. J Electrochem Soc 2004;151:E125–32.

    Article  Google Scholar 

  41. Roen LM, Paik CH, Jarvi TD. Electrocatalytic corrosion of carbon support in PEMFC cathodes. Electrochem Solid-State Lett 2004;7:A19–22.

    Article  Google Scholar 

  42. Samms SR, Wasmus S, Savinell RF. Thermal stability of Nafion® in simulated fuel cell environments. J Electrochem Soc 1996;143:1498–1504.

    Article  Google Scholar 

  43. Liu YH, Yi BL, Shao ZG, Xing DM, Zhang HM, Carbon nanotubes reinforced Nafion composite membrane for fuel cell applications. Electrochem Solid-State Lett 2006;9:A356–9.

    Article  Google Scholar 

  44. Colón-Mercado HR, Kim H, Popov BN, Durability study of Pt3Ni1 catalysts as cathode in PEM fuel cells. Electrochem Commun 2004;6:795–9.

    Article  Google Scholar 

  45. Yasuda K, Taniguchi A, Akita T, Ioroi T, Siroma Z. Platinum dissolution and deposition in the polymer electrolyte membrane of a PEM fuel cell as studied by potential cycling. Phys Chem Chem Phy. 2006;8:746–52.

    Google Scholar 

  46. Teranishi K, Kawata K, Tsushima S, Hirai S. Degradation mechanism of PEMFC under open circuit operation. Electrochem. Solid-State Lett. 2006;9:A475–7.

    Article  Google Scholar 

  47. Knights SD, Colbow KM, St-Pierre J, Wilkinson DP. Aging mechanisms and lifetime of PEFC and DMFC. J Power Sources 2004;127:127–34.

    Article  Google Scholar 

  48. Maeda M, Hagiwara A, Sotouchi H, Sato H, Zhao X, Morikawa S, et al. The effect of the graphitization degree of carbon material on corrosion rate. Electrochemistry 1999;67:155–9.

    Google Scholar 

  49. Matter PH, Zhang L, Ozkan US. The role of nanostructure in nitrogen-containing carbon catalysts for the oxygen reduction reaction. J Catal 2006;239:83–96.

    Article  Google Scholar 

  50. Maldonado S, Stevenson KJ. Influence of nitrogen doping on oxygen reduction electrocatalysis at carbon nanofiber electrodes. J Phys Chem B 2005;109:4707–16.

    Article  Google Scholar 

  51. Acharya CK, Turner CH. Stabilization of platinum clusters by substitutional boron dopants in carbon supports. J Phys Chem B 2006;110:17706–10.

    Article  Google Scholar 

  52. Meng H, Shen PK. Tungsten carbides nanocrystals promoted Pt/C electrocatalysts for oxygen reduction. J Phys Chem B, 2005;109:22705–9.

    Article  Google Scholar 

  53. Meng H, Shen PK. The beneficial effect of the addition of tungsten carbides to Pt catalysts on the oxygen electroreduction. Chem Commun 2005;4408–10.

    Google Scholar 

  54. Xu CW, Shen PK. Novel Pt/CeO2/C catalysts for electrooxidation of alcohols in alkaline media. Chem Commun 2004;2238–9.

    Google Scholar 

  55. Meng H, Shen PK. Novel Pt-free catalyst for oxygen electroreduction. Electrochem Commun 2006;8:588–94.

    Article  Google Scholar 

  56. Shen PK, Xu CW. Alcohol oxidation on nanocrytalline oxide Pd/C promoted electrocatalyst. Electrochem Commun 2006;8:184–8.

    Article  Google Scholar 

  57. Nie M, Shen PK, Wei ZD. Nanocrystalline tungsten carbide supported Au-Pd electrocatalyst for oxygen reduction. J Power Sources 2007;167:69–73.

    Article  Google Scholar 

  58. Zhang L, Zhang JJ, Wilkinson DP, Wang HJ. Progress in preparation of non-noble electrocatalysts for PEM fuel cell reactions. J Power Sources 2006;156:171–82.

    Article  Google Scholar 

  59. Bashyam R, Zelenay P. A class of non-precious metal composite catalysts for fuel cells. Nature 2006;443:63–6.

    Article  Google Scholar 

  60. Zeng J, Lee JY, Chen J, Shen PK, Song SQ. Increased metal utilization in carbonsupported Pt catalysts by adsorption of preformed Pt nanoparticles on colloidal silica, Fuel Cells. 2007;4:285–90.

    Article  Google Scholar 

  61. Stamenkovic VR, Fowler B, Mun BS, Wang GF, Ross PN, Lucas CA, et al. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 2007;315:493–7.

    Article  Google Scholar 

  62. Taniguchi A, Akit T, Yasuda K, Miyazaki Y. Analysis of electrocatalyst degradation in PEMFC caused by cell reversal during fuel starvation. J Power Sources 2004;130:42–9.

    Article  Google Scholar 

  63. Zhang J, Sasaki K, Sutter E, Adzic RR. Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters. Science 2007;315:220–2.

    Article  Google Scholar 

  64. Wang X, Li WZ, Chen ZW, Waje M, Yan YS. Durability investigation of carbon nanotube as catalyst support for proton exchange membrane fuel cell. J Power Sources 2006;158:154–9.

    Article  Google Scholar 

  65. Wei ZD, Guo HT, Tang ZY. Heat treatment of carbon-based powders carrying platinum alloy catalysts for oxygen reduction: influence on corrosion resistance and particle size. J Power Sources 1996;62:233–6.

    Article  Google Scholar 

  66. Chang SM, Chu HS. Transient behavior of a PEMFC. J Power Sources 2006;161:1161–8.

    Article  Google Scholar 

  67. Pai YH, Ke JH, Chou CC, Lin JJ, Zen JM, Shieu FS. Clay as a dispersion agent in anode catalyst layer for PEMFC. J Power Sources 2006;163:398–402.

    Article  Google Scholar 

  68. Yoon YG, Park GG, Yang TH, Han JN, Lee WY, Kim CS. Effect of pore structure of catalyst layer in a PEMFC on its performance. Inter J Hydrogen Energy 2003;28:657–62.

    Article  Google Scholar 

  69. Amirinejad M, Rowshanzamir S, Eikani MH. Effects of operating parameters on performance of a proton exchange membrane fuel cell. J Power Sources 2006;161:872–5.

    Article  Google Scholar 

  70. Ihm JW, Ryu H, Bae JS, Choo WK, High performance of electrode with low platinum loading prepared by simplified direct screen printing process in fuel cells. J Mater Sci 2004;39:4647–9.

    Article  Google Scholar 

  71. Fernández R, Ferreira-Aparicio P, Daza L. PEMFC electrode preparation: influence of the solvent composition and evaporation rate on the catalytic layer microstructure. J Power Sources 2005;151:18–24.

    Article  Google Scholar 

  72. Benítez R, Chaparro AM, Daza L. Electrochemical characterisation of Pt/C suspensions for the reduction of oxygen. J Power Sources 2005;151:2–10.

    Article  Google Scholar 

  73. Xu Z, Qi Z, Kaufman A. Superior catalysts for proton exchange membrane fuel cells sulfonation of carbon-supported catalysts using sulfate salts. Electrochem Solid-State Lett 2005;8:A313–5.

    Article  Google Scholar 

  74. Giorgi L, Pilloni L, Giorgi R, Serra E, Alvisi M, Galtieri G, et al. Electrodeposition and sputter deposition of platinum nanoparticles on gas diffusion electrodes. In: Proceedings of the 3rd European PEFC forum; 2005; Lucerne: Fuel Cell Forum 2005 (PEFC); 2005. 124.

    Google Scholar 

  75. Kim H, Popov BN. Development of novel method for preparation of PEMFC electrodes. Electrochem Solid-State Lett 2004;A71–4.

    Google Scholar 

  76. Morikawa H, Tsuihiji N, Mitsui T, Kanamura K. Preparation of membrane electrode assembly for fuel cell by using electrophoretic deposition process. J Electrochem Soc 2004;151:A1733–7.

    Article  Google Scholar 

  77. Taylor AD, Kim EY, Humes VP, Kizuka J, Thompson LT. Ink jet printing of carbon supported platinum 3-D catalyst layers for use in fuel cells. J Power Sources 2007;171:101–6.

    Article  Google Scholar 

  78. Wilson M, Gottesfeld S. Thin film catalyst layers for polymer electrolyte fuel cell electrodes. J Appl Electrochem 1992;22:1–7.

    Article  Google Scholar 

  79. Liu HS, Song CJ, Zhang L, Zhang JJ, Wang HJ, Wilkinson DP. A review of anode catalysis in the direct methanol fuel cell. J Power Sources 2006;155:95–110.

    Google Scholar 

  80. Lamy C, Leger JM, Srinivasan S. Direct methanol fuel cells: from a twentieth century electrochemist’s dream to a twenty-first century emerging technology. In: Bockris JO’M, Conway BE, White RE, editors. Modern aspects of electrochemistry. New York: Kluwer Academic Pub; 2001. 34:53–118.

    Google Scholar 

  81. Watanabe M, Motoo S. Electrocatalysis by ad-atoms: part II. Enhancement of the oxidation of methanol on platinum by ruthenium ad-atoms. J Electroanal Chem 1975;60:267–73.

    Article  Google Scholar 

  82. Frelink T, Visscher W, Van Veen JAR. On the role of Ru and Sn as promotors of methanol electro-oxidation over Pt. Surf Sci 1995;335:353–60.

    Article  Google Scholar 

  83. Rao V, Simonov PA, Savinova ER, Plaksin GV, Cherepanova S, Kryukova G, et al. The influence of carbon support porosity on the activity of PtRu/Sibunit anode catalysts for methanol oxidation. J Power Sources 2005;145:178–87.

    Article  Google Scholar 

  84. Liu FQ, Wang CY. Optimization of cathode catalyst layer for direct methanol fuel cells Part I. Experimental investigation. Electrochim Acta 2006;52:1417–25.

    Article  Google Scholar 

  85. Scott K, Argyropoulos P, Sundmacher K. A model for the liquid feed direct methanol fuel cell. J Electroanal Chem 1999;477:97–110.

    Article  Google Scholar 

  86. Argyropoulos P, Scott K, Taama WM. Modelling pressure distribution and anode/cathode streams vapour–liquid equilibrium composition in liquid feed direct methanol fuel cells. Chem Eng J 2000;78:29–41.

    Article  Google Scholar 

  87. Yang WW, Zhao TS. A two-dimensional, two-phase mass transport model for liquidfeed DMFCs. Electrochim Acta 2007;52:6125–40.

    Article  Google Scholar 

  88. Ge JB, Liu HT. A three-dimensional two-phase flow model for a liquid-fed direct methanol fuel cell. J Power Sources 2007;163:907–15.

    Article  Google Scholar 

  89. Chen SX, Zhang X, Shen PK. Macroporous conducting matrix: fabrication and application as electrocatalyst support. Electrochem Commun 2006;8:713–19.

    Article  Google Scholar 

  90. Liang ZX, Zhao TS. New DMFC anode structure consisting of platinum nanowires deposited into a Nafion membrane. J Phys Chem C 2007;111:8128–34.

    Article  Google Scholar 

  91. Wang H, Xu CW, Cheng FL, Jiang SP. Pd nanowire arrays as electrocatalysts for ethanol electrooxidation. Electrochem Commun 2007;9:1212–16.

    Article  Google Scholar 

  92. Varcoe, J R, Slade RCT. Prospects for alkaline anion-exchange membranes in low temperature fuel cells. Fuel Cells 2005;2:187–200.

    Article  Google Scholar 

  93. Shen PK, Xu CW, Meng H, Zeng R. Anion exchange membrane fuel cells. In: Zhang XW, editor. Advances in fuel cells. Kerala, India: Research Signpost; 2005.149–79.

    Google Scholar 

  94. Yu EH, Scott K. Development of direct methanol alkaline fuel cells using anion exchange membranes. J Power Sources 2004;137:248–56.

    Article  Google Scholar 

  95. Yu EH, Scott K. Direct methanol alkaline fuel cell with catalysed metal mesh anodes. Electrochem Commun 2004;6:361–65.

    Article  Google Scholar 

  96. Hu FP, Ding FW, Song SQ, Shen PK. Pd electrocatalyst supported on carbonized TiO2 nanotube for ethanol oxidation. J Power Sources 2006;163:415–19.

    Article  Google Scholar 

  97. Xu CW, Shen PK, Liu YL. Ethanol electrooxidation on Pt/C and Pd/C catalysts promoted with oxide. J Power Sources 2007;164:527–31.

    Article  Google Scholar 

  98. Paulus UA, Wokaun A, Scherer GG, Schmidt TJ, Stamenkovic V, Radmilovic V, et al. Oxygen reduction on carbon-supported Pt-Ni and Pt-Co alloy catalysts. J Phys Chem B 2002;106:4181–91.

    Article  Google Scholar 

  99. Wagner N, Schulze M, Gülzow E. Long-term investigations of silver cathodes for alkaline fuel cells. J Power Sources 2004;127:264–72.

    Article  Google Scholar 

  100. Blizanac BB, Lucas CA, Gallagher ME, Arenz M, Ross PN, Markovi NM. Anion adsorption, CO oxidation, and oxygen reduction reaction on a Au(100) surface: the pH effect. J Phys Chem B 2004;108:625–34.

    Article  Google Scholar 

  101. Zhang Y, Suryanarayanan V, Nakazawa I, Yoshihara S, Shirakashi T. Electrochemical behavior of Au nanoparticle deposited on as-grown and O-terminated diamond electrodes for oxygen reduction in alkaline solution. Electrochim Acta 2004;49:5235–40.

    Article  Google Scholar 

  102. Chang CC, Wen TC, Tien HJ. Kinetics of oxygen reduction at oxide-derived Pd electrodes in alkaline solution. Electrochim Acta 1997;42:557–65.

    Article  Google Scholar 

  103. Arenz M, Schmidt TJ, Wandelt K, Ross PN, Markovi NM. The oxygen reduction reaction on thin palladium films supported on a Pt(111) electrode. J Phys Chem B 2003;107:9813–19.

    Article  Google Scholar 

  104. Prakash J, Joachin H. Electrocatalytic activity of ruthenium for oxygen reduction in alkaline solution. Electrochim Acta 2000;45:2289–96.

    Article  Google Scholar 

  105. Maoa L, Zhang D, Sotomura T, Nakatsu K, Koshiba N, Ohsaka T. Mechanistic study of the reduction of oxygen in air electrode with manganese oxides as electrocatalysts. Electrochim Acta 2003;48:1015–21.

    Article  Google Scholar 

  106. Rikukawa M, Sanui K. Proton conducting polymer electrolyte membranes based on hydrocarbon polymers. Prog Polym Sci 2000;25:1463–1502.

    Article  Google Scholar 

  107. Iwasw M, Kawatsu S. Optimized CO tolerant electrocatalysts for polymer electrolyte fuel cells. In: Gottesfeld S, Halpert G, Landgrebe A, editors. Proceedings of the first international symposium on proton conducting membrane fuel cells; Pennington, NJ: The Electrochemical Society; 1995. 1:12–18.

    Google Scholar 

  108. Mehta V, Cooper JS. Review and analysis of PEM fuel cell design and manufacturing. J Power Sources 2003;114:32–53.

    Article  Google Scholar 

  109. Fernández JL, Raghuveer V, Manthiram A, Bard AJ. Pd-Ti and Pd-Co-Au electrocatalysts as a replacement for platinum for oxygen reduction in proton exchange membrane fuel cells. J Am Chem Soc 2005;127:13100–1.

    Article  Google Scholar 

  110. Shao MH, Sasaki K, Adzic RR. Pd-Fe nanoparticles as electrocatalysts for oxygen reduction. J Am Chem Soc 2006;128:3526–7.

    Article  Google Scholar 

  111. Suo YG, Zhuang L, Lu JT. First-principles considerations in the design of Pd-alloy catalysts for oxygen reduction. Angew Chem Int Ed 2007;46:2862–4.

    Article  Google Scholar 

  112. Kumar GS, Raja M, Parthasarathy S. High performance electrodes with very low platinum loading for polymer electrolyte fuel cells. Electrochim Acta 1995;40:280.

    Article  Google Scholar 

  113. Bevers D, Wagner N, Bradke M. Innovative production procedure for low cost PEFC electrodes and electrode membrane structures. Int J Hydrogen Energy 1998;23:57–63.

    Article  Google Scholar 

  114. Taylor E, Abdreson E, Vilambi N. Preparation of high platinum utilization gas diffusion electrode for proton exchange membrane fuel cells. J Electrochem Soc 1992;139:L45–6.

    Article  Google Scholar 

  115. Fedkiw P, Her W. An impregnation reduction method to prepare electrodes on Nafion SPE. J Electrochem Soc 1989;136:899–900.

    Article  Google Scholar 

  116. Gulzow E, Schulze M, Wagner N, Kaz T, Reissner R, Steinhilber G, et AL. Dry layer preparation and characterization of polymer electrolyte fuel cell components. J Power Sources 2000;86:352–62.

    Article  Google Scholar 

  117. Wee JH, Lee KY, Kim SH. Fabrication methods for low-Pt-loading electrocatalysts in proton exchange membrane fuel cell systems. J Power Sources 2007;165:667.

    Article  Google Scholar 

  118. Varcoe JR, Slade RCT. An electron-beam-grafted ETFE alkaline anion-exchange membrane in metal-cation-free solid-state alkaline fuel cells. Electrochem Commun 2006;8:839–43.

    Article  Google Scholar 

  119. Matsuoka K, Iriyama Y, Abe T, Matsuoka M, Ogumi Z. Alkaline direct alcohol fuel cells using an anion exchange membrane. J Power Sources 2005;150:27–31.

    Article  Google Scholar 

  120. Park JS, Park SH, Yim SD, Yoon YG, Lee WY, Kim CS. Performance of solid alkaline fuel cells employing anion-exchange membranes. J Power Sources 2008;178:626.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer London

About this chapter

Cite this chapter

Shen, P. (2008). PEM Fuel Cell Catalyst Layers and MEAs. In: Zhang, J. (eds) PEM Fuel Cell Electrocatalysts and Catalyst Layers. Springer, London. https://doi.org/10.1007/978-1-84800-936-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-84800-936-3_7

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84800-935-6

  • Online ISBN: 978-1-84800-936-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics