Skip to main content
  • 1197 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acierno LJ. Adolph Fick: mathematician, physicist, physiologist. Clin Cardiol 2000;23:390–391.

    Article  PubMed  CAS  Google Scholar 

  2. Jakob SM. Clinical review: splanchnic ischaemia. Crit Care 2002;6: 306–612.

    Article  PubMed  Google Scholar 

  3. Tegtmeyer H, King LM, Jones BE. Energy substrate metabolism, myocardial ischemia, and targets for pharmacotherapy. Am J Cardiol 1998;82:54K–60K.

    Article  Google Scholar 

  4. Ferrari R, Guardigli G, Mele D, Percoco GF, Ceconi C, Curello S. Oxidative stress during myocardial ischaemia and heart failure. Curr Pharm Des 2004;10:1699–1711.

    Article  PubMed  CAS  Google Scholar 

  5. Ferdinandy P, Schulz R. Nitric oxide, superoxide, and peroxynitrite in myocardial ischaemia–reperfusion injury and preconditioning. Br J Pharmacol 2003;138:532–543.

    Article  PubMed  CAS  Google Scholar 

  6. Ischiropoulos H. Biological selectivity and functional aspects of protein tyrosine nitration. Biochem Biophys Res Commun 2003;305: 776–783.

    Article  PubMed  CAS  Google Scholar 

  7. Giordano FJ. Oxygen, oxidative stress, hypoxia, and heart failure. J Clin Invest 2005;115:500–508.

    PubMed  CAS  Google Scholar 

  8. Alvarez B, Radi R. Peroxynitrite reactivity with amino acids and proteins. Amino Acids 2003;25:295–311.

    Article  PubMed  CAS  Google Scholar 

  9. Halliwell B. Free radicals, proteins and DNA: oxidative damage versus redox regulation. Biochem Soc Trans 1996;24:1023–1027.

    PubMed  CAS  Google Scholar 

  10. Szabó C, Dawson VL. Role of poly(ADP-ribose) synthetase in inflammation and ischaemia–reperfusion. Trends Pharmacol Sci 1998;19:287–298.

    Article  PubMed  Google Scholar 

  11. Zingarelli B. Importance of poly (ADP-ribose) polymerase activation in myocardial reperfusion injury. In: Szabó C, ed. Cell Death: The Role of Poly (ADP-Ribose) Polymerase. Boca Raton, FL: CRC Press; 2000:41–60.

    Chapter  Google Scholar 

  12. D’Amours D, Desnoyers S, D’Silva I, Poirier GG. Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions. Biochem J 1999;342: 249–268.

    Article  PubMed  Google Scholar 

  13. Chiarugi A. Poly(ADP-ribose) polymerase: killer or conspirator? The ‘‘suicide hypothesis’’ revisited. Trends Pharmacol Sci 2002;23:122–129.

    Article  PubMed  CAS  Google Scholar 

  14. Zingarelli B, O’Connor M, Wong H, Salzman AL, Szabó C. Peroxynitrite-mediated DNA strand breakage activates poly-adenosine diphosphate ribosyl synthetase and causes cellular energy depletion in macrophages stimulated with bacterial lipopolysaccharide. J Immunol 1996;156:350–358.

    PubMed  CAS  Google Scholar 

  15. Zingarelli B, Salzman AL, Szabó C. Genetic disruption of poly (ADP-ribose) synthetase inhibits the expression of P-selectin and intercellular adhesion molecule-1 in myocardial ischemia/reperfusion injury. Circ Res 1998;83:85–94.

    PubMed  CAS  Google Scholar 

  16. Zingarelli B, Hake PW, O’Connor M, Denenberg A, Kong S, Aronow BJ. Absence of poly(ADP-ribose)polymerase-1 alters nuclear factor-κB activation and gene expression of apoptosis regulators after reperfusion injury. Mol Med 2003;9:143–153.

    Article  PubMed  CAS  Google Scholar 

  17. Zingarelli B, Hake PW, O’Connor M, Denenberg A, Wong HR, Kong S, Aronow BJ. Differential regulation of activator protein-1 and heat shock factor-1 in myocardial ischemia and reperfusion injury: role of poly(ADP-ribose) polymerase-1. Am J Physiol Heart Circ Physiol 2004; 286:H1408–H1415.

    Article  PubMed  CAS  Google Scholar 

  18. Thannickal VJ, Fanburg BL. Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol 2000;279:L1005–L1028.

    PubMed  CAS  Google Scholar 

  19. Yoshizumi M, Tsuchiya K, Tamaki T. Signal transduction of reactive oxygen species and mitogen-activated protein kinases in cardiovascular disease. J Med Invest 2001;48:11–24.

    PubMed  CAS  Google Scholar 

  20. Chang L, Karin M. Mammalian MAP kinase signalling cascades. Nature 2001;410:37–40.

    Article  PubMed  CAS  Google Scholar 

  21. Zingarelli B, Sheehan M, Wong HR. Nuclear factor-κB as a therapeutic target in critical care medicine. Crit Care Med 2003;31: S105–S111.

    Article  PubMed  CAS  Google Scholar 

  22. Shaulian E, Karin M. AP-1 as a regulator of cell life and death. Nat Cell Biol 2002;4:E131–E136.

    Article  PubMed  CAS  Google Scholar 

  23. Karin M, Takahashi T, Kapahi P, Delhase M, Chen Y, Makris C, Rothwarf D, Baud V, Natoli G, Guido F, Li N. Oxidative stress and gene expression: the AP-1 and NF-κB connections. Biofactors 2001;15:87–89.

    Article  PubMed  CAS  Google Scholar 

  24. Clemens JA, Stephenson DT, Dixon EP, Smalstig EB, Mincy RE, Rash KS, Little SP. Global cerebral ischemia activates nuclear factor-κB prior to evidence of DNA fragmentation. Brain Res Mol Brain Res 1997; 48:187–196.

    Article  PubMed  CAS  Google Scholar 

  25. Zwacka RM, Zhou W, Zhang Y, Darby CJ, Dudus L, Halldorson J, Oberley L, Engelhardt JF. Redox gene therapy for ischemia/reperfusion injury of the liver reduces AP1 and NF-κB activation. Nat Med 1998;4:698–704.

    Article  PubMed  CAS  Google Scholar 

  26. Chang CK, Albarillo MV, Schumer W. Therapeutic effect of dimethyl sulfoxide on ICAM-1 gene expression and activation of NF-κB and AP-1 in septic rats. J Surg Res 2001;95:181–187.

    Article  PubMed  CAS  Google Scholar 

  27. Valen G, Hansson GK, Dumitrescu A, Vaage J. Unstable angina activates myocardial heat shock protein 72, endothelial nitric oxide synthase, and transcription factors NF-κB and AP-1. Cardiovasc Res 2000;47:49–56.

    Article  PubMed  CAS  Google Scholar 

  28. Marczin N, El-Habashi N, Hoare GS, Bundy RE, Yacoub M. Antioxidants in myocardial ischemia-reperfusion injury: therapeutic potential and basic mechanisms. Arch Biochem Biophys 2003;420:222–236.

    Article  PubMed  CAS  Google Scholar 

  29. Hellsten-Westing Y. Immunohistochemical localization of xanthine oxidase in human cardiac and skeletal muscle. Histochemistry 1993; 100:215–222.

    Article  PubMed  CAS  Google Scholar 

  30. Harrison R. Structure and function of xanthine oxidoreductase: where are we now? Free Radic Biol Med 2002;33:774–797.

    Article  PubMed  CAS  Google Scholar 

  31. Meneshian A, Bulkley GB. The physiology of endothelial xanthine oxidase: from urate catabolism to reperfusion injury to inflammatory signal transduction. Microcirculation 2002;9:161–175.

    PubMed  CAS  Google Scholar 

  32. Bulger EM, Maier RV. Antioxidants in critical illness. Arch Surg 2001;136:1201–1207.

    Article  PubMed  CAS  Google Scholar 

  33. Godber BLJ, Doel JJ, Sapkota GP, Blake DR, Stevens CR, Eisenthal R, Harrison R. Reduction of nitrite to nitric oxide catalyzed by xanthine oxidoreductase. J Biol Chem 2000;275:7757–7763.

    Article  PubMed  CAS  Google Scholar 

  34. Li H, Samouilov A, Liu X, Zweier JL. Characterization of the magnitude and kinetics of xanthine oxidase-catalyzed nitrite reduction. Evaluation of its role in nitric oxide generation in anoxic tissues. J Biol Chem 2001;276:24482–24489.

    Article  PubMed  CAS  Google Scholar 

  35. Brass CA. Xanthine oxidase and reperfusion injury: major player or minor irritant? Hepatology 1995;21:1757–1760.

    PubMed  CAS  Google Scholar 

  36. de Jong JW, van der Meer P, Nieukoop AS, Huizer T, Stroeve RJ, Bos E. Xanthine oxidoreductase activity in perfused hearts of various species, including humans. Circ Res 1990;67:770–773.

    PubMed  Google Scholar 

  37. Friedl HP, Smith DJ, Till GO, Thomson PD, Louis DS, Ward PA. Ischemia-reperfusion in humans. Appearance of xanthine oxidase activity. Am J Pathol 1990;136:491–495.

    PubMed  CAS  Google Scholar 

  38. Mathru M, Dries DJ, Barnes L, Tonino P, Sukhani R, Rooney MW. Tourniquet-induced exsanguination in patients requiring lower limb surgery. An ischemia-reperfusion model of oxidant and antioxidant metabolism. Anesthesiology 1996;84:14–22.

    Article  PubMed  CAS  Google Scholar 

  39. Pesonen EJ, Linder N, Raivio KO, Sarnesto A, Lapatto R, Hockerstedt K, Makisalo H, Andersson S. Circulating xanthine oxidase and neutrophil activation during human liver transplantation. Gastroenterology 1998;114:1009–1015.

    Article  PubMed  CAS  Google Scholar 

  40. Terada LS, Dormish JJ, Shanley PF, Leff JA, Anderson BO, Repine JE. Circulating xanthine oxidase mediates lung neutrophil sequestration after intestinal ischemia-reperfusion. Am J Physiol 1992;263:L394–L401.

    PubMed  CAS  Google Scholar 

  41. Bian K, Murad F. Nitric oxide (NO)—biogeneration, regulation, and relevance to human diseases. Front Biosci 2003;8:d264–d278.

    Article  PubMed  CAS  Google Scholar 

  42. Massion PB, Feron O, Dessy C, Balligand JL. Nitric oxide and cardiac function: ten years after, and continuing. Circ Res 2003;93:388–398.

    Article  PubMed  CAS  Google Scholar 

  43. Ma XL, Weyrich AS, Lefer DJ, Lefer AM. Diminished basal nitric oxide release after myocardial ischemia and reperfusion promotes neutrophil adherence to coronary endothelium. Circ Res 1993;72:403–412.

    PubMed  CAS  Google Scholar 

  44. de Frutos T, Sanchez de Miguel L, Farre J, Gomez J, Romero J, Marcos-Alberca P, Nunez A, Rico L, Lopez-Farre A. Expression of an endothelial-type nitric oxide synthase isoform in human neutrophils: modification by tumor necrosis factor-alpha and during acute myocardial infarction. J Am Coll Cardiol 2001;37:800–807.

    Article  PubMed  Google Scholar 

  45. Schulz R, Kelm M, Heusch G. Nitric oxide in myocardial ischemia/reperfusion injury. Cardiovasc Res 2004;61:402–413.

    Article  PubMed  CAS  Google Scholar 

  46. Abrams J. Beneficial actions of nitrates in cardiovascular disease. Am J Cardiol 1996;77:31C–37C.

    Article  PubMed  CAS  Google Scholar 

  47. Stokes AH, Hastings TG, Vrana KE. Cytotoxic and genotoxic potential of dopamine. J Neurosci Res 1999;55:659–665.

    Article  PubMed  CAS  Google Scholar 

  48. Nordberg J, Arner ES. Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic Biol Med 2001;31: 1287–1312.

    Article  PubMed  CAS  Google Scholar 

  49. Ballmer PE, Reinhart WH, Jordan P, Buhler E, Moser UK, Gey KF. Depletion of plasma vitamin C but not of vitamin E in response to cardiac operations. J Thorac Cardiovasc Surg 1994;108:311–320.

    PubMed  CAS  Google Scholar 

  50. Barsacchi R, Pelosi G, Maffei S, Baroni M, Salvatore L, Ursini F, Verunelli F, Biagini A. Myocardial vitamin E is consumed during cardiopulmonary bypass: indirect evidence of free radical generation in human ischemic heart. Int J Cardiol 1992;37:339–343.

    Article  PubMed  CAS  Google Scholar 

  51. Buffon A, Santini SA, Ramazzotti V, Rigattieri S, Liuzzo G, Biasucci LM, Crea F, Giardina B, Maseri A. Large, sustained cardiac lipid peroxidation and reduced antioxidant capacity in the coronary circulation after brief episodes of myocardial ischemia. J Am Coll Cardiol 2000; 35:633–639.

    Article  PubMed  CAS  Google Scholar 

  52. Seal JB, Gewertz BL. Vascular dysfunction in ischemia–reperfusion injury. Ann Vasc Surg 2005;19:572–584.

    Article  PubMed  Google Scholar 

  53. Rezkalla SH, Kloner RA. No-reflow phenomenon. Circulation 2002;105: 656–662.

    Article  PubMed  Google Scholar 

  54. Carlos TM, Harlan JM. Leukocyte–endothelial adhesion molecules. Blood 1994;84:2068–2101.

    PubMed  CAS  Google Scholar 

  55. Lawrence MB, Springer TA. Leukocytes roll on a selectin at physiologic flow rates: distinction from and prerequisite for adhesion through integrins. Cell 1991;65:859–873.

    Article  PubMed  CAS  Google Scholar 

  56. Malik AB, Lo SK. Vascular endothelial adhesion molecules and tissue inflammation. Pharmacol Rev 1996;48:213–229.

    PubMed  CAS  Google Scholar 

  57. Yonekawa K, Harlan JM. Targeting leukocyte integrins in human diseases. J Leukocyte Biol 2005;77:129–140.

    Article  PubMed  CAS  Google Scholar 

  58. Collins T, Read MA, Neish AS, Whitley MZ, Thanos D, Maniatis T. Transcriptional regulation of endothelial cell adhesion molecules: NF-κB and cytokine-inducible enhancers. FASEB J 1995;9:899–909.

    PubMed  CAS  Google Scholar 

  59. Gawaz M. Role of platelets in coronary thrombosis and reperfusion of ischemic myocardium. Cardiovasc Res 2004;61:498–511.

    Article  PubMed  CAS  Google Scholar 

  60. Anaya-Prado R, Toledo-Pereyra LH, Lentsch AB, Ward PA. Ischemia/reperfusion injury. J Surg Res 2002;105:248–258.

    Article  PubMed  Google Scholar 

  61. Rhee P, Morris J, Durham R, Hauser C, Cipolle M, Wilson R, Luchette F, McSwain N, Miller R. Recombinant humanized monoclonal antibody against CD18 (rhuMAb CD18) in traumatic hemorrhagic shock: results of a phase II clinical trial. Traumatic Shock Group. J Trauma 2000;49:611–620.

    Article  PubMed  CAS  Google Scholar 

  62. Baran KW, Nguyen M, McKendall GR, Lambrew CT, Dykstra G, Palmeri ST, Gibbons RJ, Borzak S, Sobel BE, Gourlay SG, Rundle AC, Gibson CM, Barron HV; Limitation of Myocardial Infarction Following Thrombolysis in Acute Myocardial Infarction (LIMIT AMI) Study Group. Double-blind, randomized trial of an anti-CD18 antibody in conjunction with recombinant tissue plasminogen activator for acute myocardial infarction: limitation of myocardial infarction following thrombolysis in acute myocardial infarction (LIMIT AMI) study. Circulation 2001;104:2778–2783.

    Article  PubMed  CAS  Google Scholar 

  63. Faxon DP, Gibbons RJ, Chronos NA, Gurbel PA, Sheehan F; HALT-MI Investigators. The effect of blockade of the CD11/CD18 integrin receptor on infarct size in patients with acute myocardial infarction treated with direct angioplasty: the results of the HALT-MI study. J Am Coll Cardiol 2002;40:1199–1204.

    Article  PubMed  CAS  Google Scholar 

  64. Mastellos D, Morikis D, Isaacs SN, Holland MC, Strey CW, Lambris JD. Complement: structure, functions, evolution, and viral molecular mimicry. Immunol Res 2003;27:367–386.

    Article  PubMed  CAS  Google Scholar 

  65. Guo RF, Ward PA. Role of C5a in inflammatory responses. Annu Rev Immunol 2005;23:821–852.

    Article  PubMed  CAS  Google Scholar 

  66. Arumugam TV, Shiels IA, Woodruff TM, Granger DN, Taylor SM. The role of the complement system in ischemia–reperfusion injury. Shock 2004;21:401–409.

    Article  PubMed  CAS  Google Scholar 

  67. Hart ML, Walsh MC, Stahl GL. Initiation of complement activation following oxidative stress. In vitro and in vivo observations. Mol Immunol 2004;41:165–171.

    Article  PubMed  CAS  Google Scholar 

  68. Riedemann NC, Guo RF, Sarma VJ, Laudes IJ, Huber-Lang M, Warner RL, Albrecht EA, Speyer CL, Ward PA. Expression and function of the C5a receptor in rat alveolar epithelial cells. J Immunol 2002;168: 1919–1925.

    PubMed  CAS  Google Scholar 

  69. Park KW, Tofukuji M, Metais C, Comunale ME, Dai HB, Simons M, Stahl GL, Agah A, Sellke FW. Attenuation of endothelium-dependent dilation of pig pulmonary arterioles after cardiopulmonary bypass is prevented by monoclonal antibody to complement C5a. Anesth Analg 1999;89:42–48.

    Article  PubMed  CAS  Google Scholar 

  70. Cable DG, Hisamochi K, Schaff HV. A model of xenograft hyperacute rejection attenuates endothelial nitric oxide production: a mechanism for graft vasospasm? J Heart Lung Transplant 1999;18:177–184.

    Article  PubMed  CAS  Google Scholar 

  71. Mahaffey KW, Granger CB, Nicolau JC, Ruzyllo W, Weaver WD, Theroux P, Hochman JS, Filloon TG, Mojcik CF, Todaro TG, Armstrong PW; COMPLY Investigators. Effect of pexelizumab, an anti-C5 complement antibody, as adjunctive therapy to fibrinolysis in acute myocardial infarction: the COMPlement inhibition in myocardial infarction treated with thromboLYtics (COMPLY) trial. Circulation 2003;108: 1176–1183.

    Article  PubMed  CAS  Google Scholar 

  72. Granger CB, Mahaffey KW, Weaver WD, Theroux P, Hochman JS, Filloon TG, Rollins S, Todaro TG, Nicolau JC, Ruzyllo W, Armstrong PW; COMMA Investigators. Pexelizumab, an anti-C5 complement antibody, as adjunctive therapy to primary percutaneous coronary intervention in acute myocardial infarction: the COMplement inhibition in Myocardial infarction treated with Angioplasty (COMMA) trial. Circulation 2003;108:1184–1190.

    Article  PubMed  CAS  Google Scholar 

  73. Williams RS, Benjamin IJ. Protective responses in the ischemic myocardium. J Clin Invest 2000;106:813–818.

    Article  PubMed  CAS  Google Scholar 

  74. Stephanou A, Latchman DS. Transcriptional regulation of the heat shock protein genes by STAT family transcription factors. Gene Expr 1999;7:311–319.

    PubMed  CAS  Google Scholar 

  75. Knowlton AA, Sun L. Heat-shock factor-1, steroid hormones, and regulation of heat-shock protein expression in the heart. Am J Physiol Heart Circ Physiol 2001;280:H455–H464.

    PubMed  CAS  Google Scholar 

  76. Okubo S, Wildner O, Shah MR, Chelliah JC, Hess ML, Kukreja RC. Gene transfer of heat-shock protein 70 reduces infarct size in vivo after ischemia/reperfusion in the rabbit heart. Circulation 2001;103: 877–881

    PubMed  CAS  Google Scholar 

  77. Abraham NG, Kappas A. Heme oxygenase and the cardiovascular-renal system. Free Radic Biol Med 2005;39:1–25.

    Article  PubMed  CAS  Google Scholar 

  78. Hausenloy DJ, Yellon DM. New directions for protecting the heart against ischaemia–reperfusion injury: targeting the Reperfusion Injury Salvage Kinase (RISK)-pathway. Cardiovasc Res 2004;61: 448–460.

    Article  PubMed  CAS  Google Scholar 

  79. Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 1986;74:1124–1136.

    PubMed  CAS  Google Scholar 

  80. Mallick IH, Yang W, Winslet MC, Seifalian AM. Ischemia-reperfusion injury of the intestine and protective strategies against injury. Dig Dis Sci 2004;49:1359–1377.

    Article  PubMed  CAS  Google Scholar 

  81. Pasupathy S, Homer-Vanniasinkam S. Surgical implications of ischemic preconditioning. Arch Surg 2005;140:405–410.

    Article  PubMed  Google Scholar 

  82. Stein AB, Tang XL, Guo Y, Xuan YT, Dawn B, Bolli R. Delayed adaptation of the heart to stress: late preconditioning. Stroke 2004;35: 2676–2679.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag London

About this chapter

Cite this chapter

Zingarelli, B. (2009). Ischemia-Reperfusion Injury. In: Wheeler, D., Wong, H., Shanley, T. (eds) Science and Practice of Pediatric Critical Care Medicine. Springer, London. https://doi.org/10.1007/978-1-84800-921-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-84800-921-9_20

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84800-920-2

  • Online ISBN: 978-1-84800-921-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics