Skip to main content

Abstract

Micro assembly refers to assembling micro size objects, such as integrated electronic circuits, micro mechanical components, and micro fluidic components. These objects are usually no bigger than 10 mm. Moreover, high accuracy (e.g. 1 µm) and high speed (e.g. 1 m/sec. or 10 m/sec2) are often required. In general, a micro assembly system is made of two parts: grasping and positioning. This chapter gives a review on the newly developed technologies with a focus on our own research. For grasping, it includes pneumatic grippers, capillary force grippers, and bio-inspired grippers. For positioning, it includes servomotors, linear motors and piezoelectric motors. Force feedback controls and image based feedback controls are also discussed. A practical micro assembly system is included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. http://www.asmpacific.com/.

    Google Scholar 

  2. http://www.ce-net.org/downloads/attachments/2002-08-09%20IPAS2003%201st%20announcement%20and%20call%20v3.pdf

    Google Scholar 

  3. http://pmg.nottingham.ac.uk/pmg/ipas2004/index.html (This page has expired)

    Google Scholar 

  4. http://www.ipas2006.org/

    Google Scholar 

  5. http://www.ipas2008.org/

    Google Scholar 

  6. Tanikawa, T., Hashimoto, Y. and Arai, T., 1998, “Micro drops for adhesive bonding of micro assemblies and making a 3-D structure micro scarecrow,” In Proceedings of IEEE International Conference on Intelligent Robots and Systems, pp. 776–781.

    Google Scholar 

  7. Obata, K.J., Motokado, T., Saito, S. and Takahashi, K., 2004, “A scheme for micromanipulation based on capillary force,” Journal of Fluid Mechanics, 498, pp. 113–121.

    Article  MATH  MathSciNet  Google Scholar 

  8. Autumn, K., Hsieh, S.T., Dudek, D.M., Chen, J., Chitaphan, C. and Full, R.J., 1999, “Dynamics of geckos running vertically,” American Zoology, 38(84A).

    Google Scholar 

  9. Ruibal, R. and Ernst, V., 1965, “The structure of the digital setae of lizards,” Journal of Morph, 117, pp. 271–294.

    Article  Google Scholar 

  10. Williams, E.E. and Peterson, J.A., 1982, “Convergent and alternative designs in the digital adhesive pads of scincid lizards,” Science, 215, pp. 1509–1511.

    Article  Google Scholar 

  11. Autumn, K., Liang, Y.A., Hsieh, S.T., Zesch, W., Chan, W.-P., Kenny, W.T., Fearing, R. and Full, R.J., 2000, “Adhesive force of a single gecko foot-hair,” Nature, 405, pp. 681–685.

    Article  Google Scholar 

  12. Autumn, K. and Peattie, A.M., 2002, “Mechanisms of adhesion in geckos,” Integrated Computational Biology, 42, pp. 1081–1090.

    Article  Google Scholar 

  13. Geim, A.K., Dubonos, S.V., Grigorieva, I.V., Novoselov, K.S., Zhukov, A.A. and Yu, S.S., 2003, “Microfabricated adhesive mimicking gecko foot-hair,” Natural Materials, 2, pp. 461–463.

    Article  Google Scholar 

  14. Sitti, M. and Fearing, R.S., 2003, “Synthetic gecko foot-hair micro/nanostructures as dry adhesives,” Journal of Adhesive Science and Technology, 17, pp. 1055–1073.

    Article  Google Scholar 

  15. Kim, D.S., Lee, H.S., Lee, J., Kim, S., Lee, K.-H., Moon, W. and Kwon, T.H., 2007, “Replication of high-aspect-ratio nanopillar array for biomimetic gecko foot-hair prototype by UV nano embossing with anodic aluminum oxide mold,” Microsystems Technology, 13, pp. 601–606.

    Article  Google Scholar 

  16. Lee, H., Lee, B.P. and Messersmith, P.B., 2007, “A reversible wet/dry adhesive inspired by mussels and geckos,” Nature, 448(19), pp. 338–341.

    Article  Google Scholar 

  17. Lu, Z., Chen, C.Y., Ganapathy, A., Zhao, G.Y., Nam, J., Yang, G.L., Burdet, E., Teo, C.L., Meng, Q.N. and Lin, W., 2006, “A force-feedback control system for microassembly,” Journal of Micromechanics and Microengineering, 16(9), pp. 1861–1868.

    Article  Google Scholar 

  18. http://www.tresky.com/products/overview.php

    Google Scholar 

  19. Chen, C.L., Jang, M.J. and Lin, K.C., 2000, “Modeling and high-precision control of a ball-screw-driven stage,” Precision Engineering, 28, pp. 483–495.

    Article  Google Scholar 

  20. Low, K.S. and Keck, M.T., 2003, “Advanced precision linear stage for industrial automation application,” IEEE Transactions on Instrumentation and Measurement, 52, pp. 785–789.

    Article  Google Scholar 

  21. Yan, M.T. and Cheng T.H., 2005, “High accuracy motion control of linear motor drive wire-EDM machine,” In Proceedings of 2005 IEEE International Conference on Mechanics, pp. 346–351.

    Google Scholar 

  22. Ranky, P.G., 2007, “MagneMotion’s linear synchronous motor (LSM) driven assembly automation and material handling system designs,” Assembly Automation, 27, pp. 97–102.

    Article  Google Scholar 

  23. http://www.automation.siemens.com/mc/metalforming/en/7f9b6f15-ced3-4a30-b0cad7b827fdb4a0/index.aspx.

    Google Scholar 

  24. http://www.hiwin.com/lm/index.html

    Google Scholar 

  25. http://kmtg.kollmorgen.com/products/motors/ddl/

    Google Scholar 

  26. Tan, K.K., Lee, T.H., Doou, H.F., Chin, S.J. and Zhao, S., 2003, “Precision motion control with disturbance observer for pulsewidth-modulated-driven permanentmagnet linear motors,” IEEE Transactions on Magnetics, 3, pp. 1813–1818.

    Google Scholar 

  27. www.DTI-Nanotech.com

    Google Scholar 

  28. Henderson, D.A., 2007, “Novel piezo motor enable positive displacement microfluidic pump,” NSTI Nanotech 2007.

    Google Scholar 

  29. Liu, Y.-T., Fung, R.-F. and Huang, T.-K., 2004, “Dynamic responses of a precision positioning table impacted by a soft-mounted piezoelectric actuator,” Precision Engineering, 28, pp. 252–260.

    Article  Google Scholar 

  30. Moriyama, S., Harasa, T. and Takanashi, A, 1985, “Precision X–Y stage with a piezodriven fine-table,” Journal of Japan Society of Precision Engineering, 50, pp. 718–723.

    Google Scholar 

  31. http://www.me.umn.edu/divisions/design/adv_microsystems/publications/spie98.pdf.

    Google Scholar 

  32. http://robot.kist.re.kr/papers/Paper79.pdf.

    Google Scholar 

  33. Cassier, C., Ferreira, A. and Hiraai, S., 2002, “Combination of vision servoing techniques and VR based simulation for semi-autonomous micro assembly workstation,” In Proceedings of the 2002 IEEE International Conference on Robotics and Automation, pp. 1501–1506.

    Google Scholar 

  34. Alex, J., Vikramaditya, B. and Nelson, B.J., 1998, “A virtual reality teleoperator interface for assembly of hybrid MEMS prototypes,” In Proceedings of ASME 1998 Design Engineering Technical Conference.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag London Limited

About this chapter

Cite this chapter

Du, R., Tang, C.X.Y., Zhang, D.L. (2008). Micro Assembly Technology and System. In: Wang, L., Xi, J. (eds) Smart Devices and Machines for Advanced Manufacturing. Springer, London. https://doi.org/10.1007/978-1-84800-147-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-84800-147-3_15

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84800-146-6

  • Online ISBN: 978-1-84800-147-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics