Skip to main content

Foundations and Formalizations of Self-organization

  • Chapter
  • First Online:
Advances in Applied Self-organizing Systems

Part of the book series: Advanced Information and Knowledge Processing ((AI&KP))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adami, C. (1998). Introduction to Artificial Life. Springer, New York.

    Book  Google Scholar 

  • Ashby, W. R. (1947). Principles of the self-organizing dynamic system. J. Gen. Psychol., 37:125–128.

    Article  Google Scholar 

  • Ay, N., and Krakauer, D. C. (2006). Information geometric theories for robust biological networks. J. Theor. Biology. 125(2):93–121.

    Google Scholar 

  • Ay, N., and Polani, D. (2007). Information flows in causal networks. Advances in Complex Systems. In Press.

    Google Scholar 

  • Ay, N., and Wennekers, T. (2003). Dynamical properties of strongly interacting Markov chains. Neural Networks, 16(10):1483–1497.

    Article  Google Scholar 

  • Baas, N. A., and Emmeche, C. (1997). On emergence and explanation. Intellectica, 2(25): 67–83.

    Google Scholar 

  • Bar-Yam, Y. (1997). Dynamics of Complex Systems. Studies in Nonlinearity. Westview, Boulder, CO.

    MATH  Google Scholar 

  • Bennett, C. H., and Landauer, R. (1985). The fundamental limits of computation. Scientific American, pages 253(1):48–56.

    Article  Google Scholar 

  • Bertschinger, N., Olbrich, E., Ay, N., and Jost, J. (2006). Autonomy: An information theoretic perspective. In Proceedings of the Workshop on Artificial Autonomy at Alife X, Bloomington, IN, pages 7–12.

    Google Scholar 

  • Comon, P. (1991). Independent component analysis. In Proceedings of the International Signal Processing Workshop on Higher-order Statistics, Chamrousse, France, pages 111–120.

    Google Scholar 

  • Crutchfield, J. P. (1994). The calculi of emergence: Computation, dynamics, and induction. Physica D, pages 11–54.

    Google Scholar 

  • Crutchfield, J. P., and Young, K. (1989). Inferring statistical complexity. Phys. Rev. Lett., 63:105–108.

    Article  MathSciNet  Google Scholar 

  • Emmeche, C., Køppe, S., and Stjernfelt, F. (2000). Levels, emergence, and three versions of downward causation. In Andersen, P. B., Emmeche, C., Finnemann, N. O., and Christiansen, P. V., editors, Downward Causation. Minds, Bodies and Matter, pages 13–34. Aarhus University Press, Århus.

    Google Scholar 

  • Golubitsky, M., and Stewart, I. (2003). The Symmetry Perspective. Birkhäuser, Basel.

    MATH  Google Scholar 

  • Grassberger, P. (1986). Toward a quantitative theory of self-generated complexity. Int. J. Theor. Phys., 25:907–938.

    Article  MathSciNet  Google Scholar 

  • Haken, H. (1983). Advanced synergetics. Springer, Berlin.

    Book  Google Scholar 

  • Harvey, I. (2000). The 3 Es of artificial life: Emergence, embodiment and evolution. Invited talk at Artificial Life VII, 1-6. August, Portland, Oregon, USA.

    Google Scholar 

  • Helbing, D., Buzna, L., Johansson, A., and Werner, T. (2005). Self-organized pedestrian crowd dynamics: Experiments, simulations, and design solutions. Transportation Science, 39(1): 1–24.

    Article  Google Scholar 

  • Hoyle, R. (2006). Pattern Formation. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Jetschke, G. (1989). 1 Mathematik der Selbstorganisation. Vieweg, Braunschweig.

    Book  Google Scholar 

  • Klyubin, A. S., Polani, D., and Nehaniv, C. L. (2004). Organization of the information flow in the perception-action loop of evolved agents. In Proceedings of 2004 NASA/DoD Conference on Evolvable Hardware, pages 177–180. IEEE Computer Society.

    Google Scholar 

  • Klyubin, A. S., Polani, D., and Nehaniv, C. L. (2005). Empowerment: A universal agent-centric measure of control. In Proceedings of the IEEE Congress on Evolutionary Computation, 2–5 September 2005, Edinburgh, Scotland (CEC 2005), pages 128–135. IEEE.

    Google Scholar 

  • Landauer, R. (1961). Irreversibility and heat generation in the computing process. IBM Journal of Research and Development, 5:183–191.

    Article  MathSciNet  Google Scholar 

  • Mees, A. I. (1981). Dynamics of feedback systems. Wiley, New York.

    MATH  Google Scholar 

  • Meinhardt, H. (1972). A theory of biological pattern formation. Kybernetik, 12:30–39.

    Article  Google Scholar 

  • Meinhardt, H. (1982). Models of Biological Pattern Formation. Academic, New York.

    Google Scholar 

  • Pask, G. (1960). The natural history of networks. In Yovits, M. C., and Cameron, S., editors (1960). Self-Organizing Systems – Proceedings of an Interdisciplinary Conference, on Computer Science and Technology and their Application, 5–6 May 1959. Pergamon, New York.

    Google Scholar 

  • Polani, D. (2003). Measuring self-organization via observers. In Banzhaf, W., Christaller, T., Ziegler, J., Dittrich, P., Kim, J. T., Lange, H., Martinetz, T., and Schweitzer, F., editors, Advances in Artificial Life (Proceedings of the 7th European Conference on Artificial Life, Dortmund, September 14–17, 2003), Springer, Berlin, Heidelberg.

    Google Scholar 

  • Polani, D. (2004). Defining emergent descriptions by information preservation. InterJournal Complex Systems, 1102.

    Google Scholar 

  • Polani, D. (2006). Emergence, intrinsic structure of information, and agenthood. InterJournal Complex Systems, 1937.

    Google Scholar 

  • Prigogine, I., and Nicolis, G. (1977). Self-Organization in Non-Equilibrium Systems: From Dissipative Structures to Order Through Fluctuations. Wiley, New York.

    MATH  Google Scholar 

  • Prokopenko, M., Gerasimov, V., and Tanev, I. (2006). Evolving spatiotemporal coordination in a modular robotic system. In Nolfi, S., Baldassarre, G., Calabretta, R., Hallam, J. C. T., Marocco, D., Meyer, J.-A., Miglino, O., and Parisi, D., editors, From Animals to Animats 9: 9th International Conference on the Simulation of Adaptive Behavior (SAB 2006), Rome, Italy, volume 4095 of Lecture Notes in Computer Science, pages 558–569. Springer. Berlin, Heidelberg.

    Chapter  Google Scholar 

  • Rasmussen, S., Baas, N., Mayer, B., Nilsson, M., and Olesen, M. W.(2001). Ansatz for dynamical hierarchies. Artificial Life, 7:329–353.

    Article  Google Scholar 

  • Reichl, L. (1980). A Modern Course in Statistical Physics. University of Texas Press, Austin.

    MATH  Google Scholar 

  • Shalizi, C. R. (2001). Causal Architecture, Complexity and Self-Organization in Time Series and Cellular Automata. PhD thesis, University of Wisconsin, Madison.

    Google Scholar 

  • Shalizi, C. R., and Crutchfield, J. P. (2002). Information bottlenecks, causal states, and statistical relevance bases: How to represent relevant information in memoryless transduction. Advances in Complex Systems, 5(1):91–95.

    Article  Google Scholar 

  • Shalizi, C. R., Shalizi, K. L., and Haslinger, R. (2004). Quantifying self-organization with optimal predictors. Physical Review Letters, 93(11):118701.

    Article  Google Scholar 

  • Slonim, N., Friedman, N., , and Tishby, T. (2001). Agglomerative multivariate information bottleneck. In Neural Information Processing Systems (NIPS 01), pages 929–936, La Jolla.

    Google Scholar 

  • Slonim, N., S. Atwal, G., Tkačik, G., and Bialek, W. (2005). Estimating mutual information and multi-information in large networks. arXiv:cs.IT/0502017.

    Google Scholar 

  • Spitzner, A., and Polani, D. (1998). Order parameters for self-organizing maps. In Niklasson, L., Bodén, M., and Ziemke, T., editors, Proceedings of the 8th International Conference on Artificial Neural Networks (ICANN 98), Skövde, Sweden, volume 2, pages 517–522. Springer, Berlin.

    Google Scholar 

  • Tishby, N., Pereira, F. C., and Bialek, W. (1999). The information bottleneck method. In Proceedings of the 37th Annual Allerton Conference on Communication, Control and Computing, IL, Urbana-Champaign.

    Google Scholar 

  • Tononi, G., Sporns, O., and Edelman, G. M. (1994). A measure for brain complexity: Relating functional segregation and integration in the nervous system. Proceedings of the Natural Academy of Sciences, U.S.A., 91:5033–5037.

    Google Scholar 

  • Turing, A. M. (1952). The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society of London. B, 327:37–72.

    MathSciNet  MATH  Google Scholar 

  • Walter, W. G. (1951). A machine that learns. Scientific American, pages 185(2):60–63.

    Article  Google Scholar 

  • Yovits, M. C., and Cameron, S., editors (1960). Self-Organizing Systems – Proceedings of an Interdisciplinary Conference, on Computer Science and Technology and their Application, 5-6 May 1959. Pergamon, New York .

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag London Limited

About this chapter

Cite this chapter

Polani, D. (2008). Foundations and Formalizations of Self-organization. In: Prokopenko, M. (eds) Advances in Applied Self-organizing Systems. Advanced Information and Knowledge Processing. Springer, London. https://doi.org/10.1007/978-1-84628-982-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-982-8_2

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-981-1

  • Online ISBN: 978-1-84628-982-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics