Skip to main content

Control of Interstitial Fluid Homeostasis: Roles of Growth Factors and Integrins

  • Chapter
Vascular Complications in Human Disease

Abstract

Fluid and solutes are constantly filtered from the blood stream to the surrounding loose interstitial connective tissue. This flow of fluid has importance for, e.g., cellular metabolism and immunosurveillance. The filtered fluid is moved through the tissues into the lymphatic vessels, which eventually return fluid and solutes back into the blood circulation. The driving force for the filtration results from differences between fluid pressures in the blood vessel and loose connective tissue. The Starling equation, JV = ΔPK, describes fluid filtration (JV) across a capillary wall (for a review, see Ref.1). K is a constant expressing capillary area and permeability. ΔP is the differences in the colloid osmotic pressures in plasma (COPc) and interstitial fluid (COPif), and between capillary hydrostatic pressure (Pc) and interstitial fluid pressure (Pif) according to: ΔPP = (Pc − Pif ) − σ (COPc − COPif), where σ is the plasma protein reflection coefficient. Normally, σ is close to 1, reflecting the low leakage of plasma proteins from normal blood vessels. The higher concentration of diffusible proteins in plasma compared to interstitial fluid together with the properties of the capillary wall causes a higher COPc than COPif, generating a pressure difference that tends to keep fluid within the vessels. Inflammatory processes result in an increased vascular permeability for plasma proteins with a lowering of σ that may cause edema formation since σ (COPc − COPif) is lowered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aukland K, Reed RK. Interstitial-lymphatic mechanisms in the control of extracellular fluid volume. Physiol Rev 1993;73:1–78.

    PubMed  CAS  Google Scholar 

  2. Dvorak HF. Discovery of vascular permeability factor (VPF). Exp Cell Res 2006;312:522–526.

    Article  PubMed  CAS  Google Scholar 

  3. Tammela T, Enholm B, Alitalo K, Paavonen K. The biology of vascular endothelial growth factors. Cardiovasc Res 2005;65:550–563.

    Article  PubMed  CAS  Google Scholar 

  4. Weis SM, Cheresh DA. Pathophysiological consequences of VEGF-induced vascular permeability. Nature 2005;437:497–504.

    Article  PubMed  CAS  Google Scholar 

  5. Rubin K, Gullberg D, Tomasini-Johansson B, Reed RK, Rydén C, Borg TK. Molecular recognition of the extracellular matrix by cell surface receptors. In: Comper WD, ed. Extracellular Matrix, Vol. 2, Molecular Components and Interactions. Reading, UK: Harwood Academic Publishers, 1996:262–309.

    Google Scholar 

  6. Reed RK, Berg A, Gjerde EA, Rubin K. Control of interstitial fluid pressure: role of β1-integrins. Semin Nephrol 2001;21:222–230.

    Article  PubMed  CAS  Google Scholar 

  7. Wiig H, Rubin K, Reed RK. New and active role of the interstitium in control of interstitial fluid pressure: potential therapeutic consequences. Acta Anaesthesiol Scand 2003;47:111–121.

    Article  PubMed  CAS  Google Scholar 

  8. Meyer FA. Macromolecular basis of globular protein exclusion and of swelling pressure in loose connective tissue (umbilical cord). Biochem Biophys Acta 1983;755:388–399.

    PubMed  CAS  Google Scholar 

  9. Nedrebø T, Berg A, Reed RK. Effect of tumor necrosis factor-α, IL-1β, and IL-6 on interstitial fluid pressure in rat skin. Am J Physiol 1999;277:H1857–1862.

    PubMed  Google Scholar 

  10. Berg A, Ekwall, AK, Rubin K, Stjernschantz J, Reed RK. Effect of PGE1, PGI2, and PGF analogs on collagen gel compaction in vitro and interstitial pressure in vivo. Am J Physiol 1998;274:H663–671.

    PubMed  CAS  Google Scholar 

  11. Rodt SÅ, Reed RK, Ljungström M, Gustafsson TO, Rubin K. The anti-inflammatory agent a-trinositol exerts its edema-preventing effects through modulation of β1 integrin function. Circ Res 1994;75:942–948.

    PubMed  CAS  Google Scholar 

  12. Shirakawa F, Yamashita U, Chedid M, Mizel SB. Cyclic AMP-an intracellular second messenger for interleukin 1. Proc Natl Acad Sci USA 1988;85:8201–8205.

    Article  PubMed  CAS  Google Scholar 

  13. Rodt SÅ, Åhlen K, Berg A, Rubin K, Reed RK. A novel physiological function for platelet-derived growth factor-BB in rat dermis. J Physiol (London) 1996;495:193–200.

    PubMed  CAS  Google Scholar 

  14. Heuchel R, Berg A, Tallquist M, et al. Platelet-derived growth factor beta receptor regulates interstitial fluid homeostasis through phosphatidylinositol-3′ kinase signaling. Proc Natl Acad Sci USA 1999;96:11410–11415.

    Article  PubMed  CAS  Google Scholar 

  15. Fredriksson L, Li H, Eriksson U. The PDGF family: four gene products form five dimeric isoforms. Cytokine Growth Factor Rev 2004;15:197–204.

    Article  PubMed  CAS  Google Scholar 

  16. Nedrebø T, Karlsen TV, Salvesen GS, Reed RK. A novel function of insulin in rat dermis. J Physiol 2004;559:583–591.

    Article  PubMed  CAS  Google Scholar 

  17. Åhlen K, Berg A, Stiger F, et al. Cell interactions with collagen matrices in vivo and in vitro depend on phosphatidylinositol 3-kinase and free cytoplasmic calcium. Cell Adhes Commun 1998;5:461–473.

    Article  PubMed  Google Scholar 

  18. Reed RK, Rubin K, Wiig H, Rodt SÅ. Blockade of β1-integrins in skin causes edema through lowering of interstitial fluid pressure. Circ Res 1992;71:978–983.

    PubMed  CAS  Google Scholar 

  19. Hynes RO. Integrins: bidirectional, allosteric signaling machines. Cell 2002;110:673–687.

    Article  PubMed  CAS  Google Scholar 

  20. Miranti CK, Brugge JS. Sensing the environment: a historical perspective on integrin signal transduction. Nat Cell Biol 2002;4:E83–90.

    Article  PubMed  CAS  Google Scholar 

  21. Ruoslahti E, Reed JC. Anchorage dependence, integrins, and apoptosis. Cell 1994;77:477–478.

    Article  PubMed  CAS  Google Scholar 

  22. Gullberg DE, Lundgren-Åkerlund E. Collagen-binding I domain integrins—what do they do? Prog Histochem Cytochem 2002;37:3–54.

    Article  PubMed  CAS  Google Scholar 

  23. Schwartz MA, Ginsberg MH. Networks and crosstalk: integrin signalling spreads. Nat Cell Biol 2002;4:E65–68.

    Article  PubMed  CAS  Google Scholar 

  24. Liden Å, Berg A, Nedrebø T, Reed RK, Rubin K. Platelet-derived growth factor BB-mediated normalization of dermal interstitial fluid pressure after mast cell degranulation depends on β3 but not β1 integrins. Circ Res 2006;98:635–641.

    Article  PubMed  CAS  Google Scholar 

  25. Grinnell F. Fibroblast biology in three-dimensional collagen matrices. Trends Cell Biol 2003;13:264–269.

    Article  PubMed  CAS  Google Scholar 

  26. Harris AK, Stopak D, Wild P. Fibroblast traction as a mechanism for collagen morphogenesis. Nature 1981;290:249–251.

    Article  PubMed  CAS  Google Scholar 

  27. Balaban NQ, Schwarz US, Riveline D, et al. Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nat Cell Biol 2001;3:466–472.

    Article  PubMed  CAS  Google Scholar 

  28. Smilenov LB, Mikhailov A, Pelham RJ, Marcantonio EE, Gundersen GG. Focal adhesion motility revealed in stationary fibroblasts. Science 1999;286:1172–1174.

    Article  PubMed  CAS  Google Scholar 

  29. Gullberg D, Tingström A, Thuresson AC, et al. β1 Integrin-mediated collagen gel contraction is stimulated by PDGF. Exp Cell Res 1990;186:264–272.

    Article  PubMed  CAS  Google Scholar 

  30. Cukierman E, Pankov R, Stevens DR, Yamada KM. Taking cell-matrix adhesions to the third dimension. Science 2001;294:1708–1712.

    Article  PubMed  CAS  Google Scholar 

  31. Cooke ME, Sakai T, Mosher DF. Contraction of collagen matrices mediated by α2β1A and αVβ3 integrins. J Cell Sci 2000;113:2375–2383

    PubMed  CAS  Google Scholar 

  32. Grundström G, Mosher DF, Sakai T, Rubin K. Integrin aVb3 mediates platelet-derived growth factor-BB-stimulated collagen gel contraction in cells expressing signaling deficient integrin α2β1. Exp Cell Res 2003;291:463–473.

    Article  PubMed  CAS  Google Scholar 

  33. Clark RA, Folkvord JM, Hart CE, Murray MJ, McPherson JM. Platelet isoforms of platelet-derived growth factor stimulate fibroblasts to contract collagen matrices. J Clin Invest 1989;84:1036–1040.

    Article  PubMed  CAS  Google Scholar 

  34. Tingström A, Heldin C-H, Rubin K. Regulation of fibroblast-mediated collagen gel contraction by platelet-derived growth factor, interleukin-1α and transforming growth factor-β1. J Cell Sci 1992;102:315–322.

    PubMed  Google Scholar 

  35. Dvorak HF. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 1986;315:1650–1659.

    PubMed  CAS  Google Scholar 

  36. Pollard JW. Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 2004;4:71–78.

    Article  PubMed  CAS  Google Scholar 

  37. Bhowmick NA, Neilson EG, Moses HL. Stromal fibroblasts in cancer initiation and progression. Nature 2004;432:332–337.

    Article  PubMed  CAS  Google Scholar 

  38. Jakobisiak M, Lasek W, Golab J. Natural mechanisms protecting against cancer. Immunol Lett 2003;90:103–122.

    Article  PubMed  CAS  Google Scholar 

  39. Bingle L, Brown NJ, Lewis CE. The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. J Pathol 2002;196:254–265.

    Article  PubMed  CAS  Google Scholar 

  40. Voronov E, Shouval DS, Krelin Y, et al. IL-1 is required for tumor invasiveness and angiogenesis. Proc Natl Acad Sci USA 2003;100:2645–2650.

    Article  PubMed  CAS  Google Scholar 

  41. Jain RK. Barriers to drug delivery in solid tumors. Sci Am 1994;271:58–65.

    Article  PubMed  CAS  Google Scholar 

  42. Gutmann R, Leunig M, Feyh J, et al. Interstitial hypertension in head and neck tumors in patients: correlation with tumor size. Cancer Res 1992;52:1993–1995.

    PubMed  CAS  Google Scholar 

  43. Brekken C, Hjelstuen MH, Bruland OS, de Lange Davies C. Hyaluronidase-induced periodic modulation of the interstitial fluid pressure increases selective antibody uptake in human osteosarcoma xenografts. Anticancer Res 2000;20:3513–3519.

    PubMed  CAS  Google Scholar 

  44. Jain RK. Transport of molecules in the tumor interstitium: a review. Cancer Res 1987;47:3039–3051.

    PubMed  CAS  Google Scholar 

  45. Leu AJ, Berk DA, Lymboussaki A, Alitalo K, Jain RK. Absence of functional lymphatics within a murine sarcoma: a molecular and functional evaluation. Cancer Res 2000;60:4324–4327.

    PubMed  CAS  Google Scholar 

  46. Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature 2000;407:249–257.

    Article  PubMed  CAS  Google Scholar 

  47. Tannock IF. Tumor physiology and drug resistance. Cancer Metastasis Rev 2001;20:123–132.

    Article  PubMed  CAS  Google Scholar 

  48. Rubin K, Sjöquist M, Gustafsson AM, Isaksson B, Salvessen G, Reed RK. Lowering of tumoral interstitial fluid pressure by prostaglandin E1 is paralleled by an increased uptake of 51Cr-EDTA. Int J Cancer 2000;86:636–643.

    Article  PubMed  CAS  Google Scholar 

  49. Emerich, DF, Snodgrass P, Dean RL, et al. Bradykinin modulation of tumor vasculature: I. Activation of B2 receptors increases delivery of chemotherapeutic agents into solid peripheral tumors, enhancing their efficacy. J Pharmacol Exp Ther 2001;296:623–631.

    PubMed  CAS  Google Scholar 

  50. Pietras K, Östman A, Sjöquist M, et al. Inhibition of platelet-derived growth factor receptors reduces interstitial hypertension and increases transcapillary transport in tumors. Cancer Res 2001;61:2929–2934

    PubMed  CAS  Google Scholar 

  51. Lammerts E, Roswall P, Sundberg C, et al. Interference with TGF-β1 and-b3 in tumor stroma lowers tumor interstitial fluid pressure independently of growth in experimental carcinoma. Int J Cancer 2002;102:453–462.

    Article  PubMed  CAS  Google Scholar 

  52. Lee CG, Heijn M, di Tomaso E, et al. Anti-vascular endothelial growth factor treatment augments tumor radiation response under normoxic or hypoxic conditions. Cancer Res 2000;60:5565–5570.

    PubMed  CAS  Google Scholar 

  53. Kristjansen PE, Boucher Y, Jain RK. Dexamethasone reduces the interstitial fluid pressure in a human colon adenocarcinoma xenograft. Cancer Res 1993;53:4764–4766.

    PubMed  CAS  Google Scholar 

  54. Salnikov AV, Iversen VV, Koisti M, et al. Lowering of tumor interstitial fluid pressure specifically augments efficacy of chemotherapy. FASEB J 2003;17:1756–1758.

    PubMed  CAS  Google Scholar 

  55. Pietras K, Rubin K, Sjöblom T, et al. Inhibition of PDGF receptor signaling in tumor stroma enhances antitumor effect of chemotherapy. Cancer Res 2002;62:5476–5484.

    PubMed  CAS  Google Scholar 

  56. Willett CG. Boucher Y, Di Tomaso E, et al. Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat Med 2004;10:145–147.

    Article  PubMed  CAS  Google Scholar 

  57. Salnikov AV, Roswall P, Sundberg C, Gardner H, Heldin N-E, Rubin K. Inhibition of TGF-β modulates macrophages and vessel maturation in parallel to a lowering of interstitial fluid pressure in experimental carcinoma. Lab Invest 2005;85:512–521.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag London Limited

About this chapter

Cite this chapter

Rubin, K., Lidén, Å., van Wieringen, T., Reed, R.K. (2008). Control of Interstitial Fluid Homeostasis: Roles of Growth Factors and Integrins. In: Abraham, D., Dashwood, M., Handler, C., Coghlan, G. (eds) Vascular Complications in Human Disease. Springer, London. https://doi.org/10.1007/978-1-84628-919-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-919-4_8

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-918-7

  • Online ISBN: 978-1-84628-919-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics